1. (0 points) READ the NOTES on SECRET SHARING

2. (30 points) Assume there is already a fast procedure to TEST if a number is prime. Call it TEST(n).

 (a) (15 points) Write pseudocode for an algorithm that, on input \(N \), finds a SAFE prime between \(N \) and 2\(N \) and SKIPS any number \(n \) that is divisible by 2, 3, or 5.

 (b) (15 points) In your code for Part 1 you should have tested if \((n - 1)/2 \) was prime to ensure that \(n \) was a safe prime. You may have ended up testing numbers of this form that are divisible by 2, 3, or 5. SO lets make it faster: Write pseudocode for an algorithm that, on input \(N \), finds a SAFE prime between \(N \) and 2\(N \) and SKIPS at any number \(n \) such that \(n \) is divisible by 2, 3, or 5 OR such that \((n - 1)/2 \) is divisible by 2, 3, or 5.

SOLUTION TO PROBLEM TWO

a) Can assume \(N \equiv 0 \pmod{30} \).
Input(\(N \))
For \(i = 1 \) to \(N/6 \)
 For \(a \in \{1, 7, 11, 13, 17, 19, 23, 29\} \)
 \(n = N + 30i + a \)
 \(m = (n - 1)/2 \)
 if TEST(\(n \))=YES then if TEST(\(m \))=YES output \(n \) and STOP.

b) We want to make sure that \((n - 1)/2 \) is not divisible by 2,3, or 5.
If \(n - 1/2 \equiv 0 \pmod{2} \) then \(n \equiv 1 \pmod{4} \).
If \(n - 1/2 \equiv 0 \pmod{3} \) then \(n \equiv 1 \pmod{6} \).
If \(n - 1/2 \equiv 0 \pmod{5} \) then \(n \equiv 1 \pmod{10} \).
Combining this with the conditions for \(n \) not divisible by 2,3,5 we have that we must have an \(n \) such that
\[n \not\equiv 0 \pmod{2}. \]
\[n \not\equiv 0 \pmod{3}. \]
\[n \not\equiv 0 \pmod{5}. \]
\[n \not\equiv 1 \pmod{4}. \]
\[n \not\equiv 1 \pmod{6}. \]
\[n \not\equiv 1 \pmod{10}. \]

This is equivalent to
\[n \equiv 3 \pmod{4} \text{ so } n \equiv 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59 \pmod{60}. \]
\[n \equiv 5 \pmod{6} \text{ so } n \equiv 5, 11, 17, 23, 29, 35, 41, 47, 53, 59 \pmod{60}. \]
\[n \equiv 3, 7, 9 \pmod{10} \text{ so } n \equiv 3, 7, 9, 13, 17, 19, 23, 27, 29, 33, 37, 39, 43, 47, 49, 53, 57, 59 \pmod{60}. \]

We need the numbers that are in all three of these sets. That's just \(\{23, 47, 59\} \).

Can assume \(N \equiv 0 \pmod{6} \).

Input(\(N \))

For \(i = 1 \) to \(N/60 \)

For \(a \in \{23, 47, 59\} \)

\[n = N + 60i + a \]

\[m = (n - 1)/2 \]

if TEST\((n)\)=YES then if TEST\((m)\)=YES output \(n \) and STOP.

\textbf{END OF SOLUTION TO PROBLEM TWO}

3. (OPTIONAL) Zelda wants to share a secret \(s \) with \(A_1, \ldots, A_{n+1} \) so that

- \(A_1 \) and \(A_2 \) can determine the secret,
- \(A_2 \) and \(A_3 \) can determine the secret,
- \(A_3 \) and \(A_4 \) can determine the secret,
- \(\vdots \)
- \(A_n \) and \(A_{n+1} \) can determine the secret.
Zelda uses the Random String Method.

(a) Explain what Zelda does.

(b) For any particular \(i \in \{1, \ldots, n + 1\} \) how many random strings does \(A_i \) get?

SOLUTION TO PROBLEM THREE

a) Zelda has secret \(s \).

For each \(i, 1 \leq i \leq n \), Zelda produces random \(r \) and then \(r' = r \oplus s \).

She then give \(A_i \) \(r \) and \(A_{i+1} \) \(r' \).

b)

\(A_1 \) is only involved with one pair so she gets one string.

\(A_2, \ldots, A_n \) are each involved with two pairs so they each get two strings.

\(A_{n+1} \) is involved with one pair so she gets one string.

END OF SOLUTION TO PROBLEM THREE

GO TO NEXT PAGE!
4. (OPTIONAL) (NOTE- the solution is based on material I did not do in class. Do not worry- this material will not be on the exam.) Zelda has a secret s in the integers mod 13 and she wants to give shares to A_1, \ldots, A_{10} such that

- If A_1, A_2 and ANY three of $\{A_3, \ldots, A_{10}\}$ get together then they can find out the secret, but NO two can.
- Each person gets ONE string of length s.
- The scheme is information-theoretic secure.

Explain how Zelda can do this.

SOLUTION TO PROBLEM FOUR

Zelda generates random r_1, r_2 and then creates $r_3 = r_1 \oplus r_2 \oplus s$.

A_1 gets r_1

A_2 gets r_2

A_3, \ldots, A_{10} secret share r_3 so that any three of them can find it but no two: Zelda generates random a_2, a_1 and looks at the polynomial

$$f(x) = a_2 x^2 + a_1 x + r_3$$

(all mod 13).

For $3 \leq i \leq 10$ she gives $A_i f(i)$.

(could also give $A_3 f(1), A_4 f(2)$, etc.

END SOLUTION TO PROBLEM FOUR

5. (40 points) Zelda has a secret and she wants to use the polynomial method over mod 17. She wants to share it with A_1, \ldots, A_6 such that if 4 of them get together they can find out the secret but if 3 of them get together they cannot. She wants to give everyone one share in $\{0, \ldots, 16\}$. Recall that she gives $A_i f(i)$. We present different scenarios.

(a) A_1 has 2, A_2 has 5, A_3 has 10. If they get together then can they determine the secret? If so then say how, if not then say why not.

(HINT- this does NOT involve a lot of calculation.)
(b) A_1 has 2, A_2 has 5, A_3 has 10, A_4 has 0. If they get together then can they determine the secret? If so then say how, if not then say why not. (HINT- this does NOT involve a lot of calculation.)

(c) A_1 has 1, A_2 has 1, A_3 has 1, A_4 has 1. Has something gone wrong? Gee they all have the same number! If something has gone wrong then what is it. If not then determine the secret. (HINT- this does NOT involve a lot of calculation.)

(d) A_1 has 0, A_2 has 0, A_3 has 0, A_4 has 0. Has something gone wrong? Gee they all have the same number! If something has gone wrong then what is it. If not then determine the secret. (HINT- this does NOT involve a lot of calculation.)

SOLUTION TO PROBLEM FIVE

a) NO. A_1, A_2, and A_3 have three points of a cubic so they cannot determine it.

b) YES. Since its a cubic and they have four points we can determine it. In fact this one is easy: since $f(1) = 1$, $f(2) = 4$, $f(3) = 9$, $f(4) = 16$. Hence $f(x) = x^2 + 1$ works. And it must BE $f(x) = x^2$ since any two cubics that agree on four points agree. The secret is the constant term which is 0. Since its over mod 17 then we think of the secret as being 0000.

5c) YES. Give then data $f(x) = 1$. So the secret is 1. No problem there.

5c) YES. Give then data $f(x) = 0$. So the secret is 0. No problem there.

(For those who thought surely something is wrong or he wouldn't have asked the question I've warned you to NOT reason that way!)

END OF SOLUTION TO PROBLEM SIX

GO TO NEXT PAGE!
6. (30 points) Zelda has used polynomial secret sharing with A_1, \ldots, A_9 such that any two together can learn the secret, but one person alone cannot. She does this over mod 7. A_1 and A_2 get together! They plan to have A_1 reveal and then A_2 reveal.

A_2 is dishonest!

A_1 reveals his share and its 6. A_2 wants to lie and reveal a share so that A_1 thinks the secret is 3. Can he do this? If so then say what he reveals, and if not then show why not.

SOLUTION TO PROBLEM SIX

First a general thing to know: a line through $(1, a)$ and $(2, b)$ is

$$f(x) = (b - a)x + (2a - b)$$

(ADVICE- put this on your cheat sheet.)

If A_1 says 6 and A_2 says b (to be determined) then they agree that $(1, 6)$ and $(2, b)$ are point on the linear function Hence

$$f(x) = (b - 6)x + (12 - b) = (b - 6)x + (5 - b)$$

A_2 wants $f(0) = 3$. So he wants

$$5 - b = 3$$

so $b = 2$.

END OF SOLUTION TO PROBLEM SIX