
A CFL for Σ∗ − {anbncn : n ∈ N}
By William Gasarch

1 Introduction

Σ∗ − {anbncn : n ∈ N}.
Note that this language is the union of the following languages

1. Σ∗baΣ∗

2. Σ∗caΣ∗

3. Σ∗cbΣ∗

4. {an1bn2cn3 : n1 < n2}.

5. {an1bn2cn3 : n1 > n2}.

6. {an1bn2cn3 : n2 < n3}.

7. {an1bn2cn3 : n2 > n3}.

8. {an1bn2cn3 : n1 < n3}.

9. {an1bn2cn3 : n1 > n3}.

We give a CFG for each of these and then use closure under union. It would be very easy to
use the closure under union construction to get a real CFG for the union.

2 Σ∗baΣ∗

We give a CFG for Σ∗baΣ∗. The ones for
Σ∗caΣ∗

Σ∗cbΣ∗

are similar.
S → TbaT
T → aT
T → bT
T → cT
T → e.
Note that T can generate any element of Σ∗. Hence we get Σ∗baΣ∗.

1



3 {an1bn2cn3 : n1 < n2}

We give CFG’s for {an1bn2cn3 : n1 < n2}. The CFG’s for
{an1bn2cn3 : n1 > n2}
{an1bn2cn3 : n2 < n3}
{an1bn2cn3 : n2 > n3}
are similar.
S → TBC
T → aTb
T → e
B → Bb
B → b
C → cC
C → e
IDEA: T will generate anbn. Then B will generate AT LEAST one b, so there will be more b’s

than a’s. C will generate as any number of c’s.

4 {an1bn2cn3 : n1 < n3}

We give CFG’s for {an1bn2cn3 : n1 < n2}. The CFG’s for
{an1bn2cn3 : n1 > n3}
is similar.
S → aTcC
T → aTc
T → B
B → bB
B → e
C → cC
C → c.
IDEA: T will generate anTcn. Then C will generate at least one more c. Then T will generate

any number of b’s.

2


