A CFL for $\Sigma^* - \{a^n b^n c^n : n \in \mathbb{N}\}$ By William Gasarch

1 Introduction

 $\Sigma^* - \{a^n b^n c^n : n \in \mathsf{N}\}.$

Note that this language is the union of the following languages

- 1. $\Sigma^* ba \Sigma^*$
- 2. $\Sigma^* ca \Sigma^*$
- 3. $\Sigma^* cb\Sigma^*$
- 4. $\{a^{n_1}b^{n_2}c^{n_3}: n_1 < n_2\}.$
- 5. $\{a^{n_1}b^{n_2}c^{n_3}: n_1 > n_2\}.$
- 6. $\{a^{n_1}b^{n_2}c^{n_3}: n_2 < n_3\}.$
- 7. $\{a^{n_1}b^{n_2}c^{n_3}: n_2 > n_3\}.$
- 8. $\{a^{n_1}b^{n_2}c^{n_3}: n_1 < n_3\}.$
- 9. $\{a^{n_1}b^{n_2}c^{n_3}: n_1 > n_3\}.$

We give a CFG for each of these and then use closure under union. It would be very easy to use the closure under union construction to get a real CFG for the union.

2 $\Sigma^* ba \Sigma^*$

We give a CFG for $\Sigma^* b a \Sigma^*$. The ones for

$$\begin{split} \Sigma^* ca \Sigma^* \\ \Sigma^* cb \Sigma^* \\ \text{are similar.} \\ S &\to T ba T \\ T &\to a T \\ T &\to b T \\ T &\to b T \\ T &\to c T \\ T &\to e. \end{split}$$
Note that T can generate any element of Σ^* . Hence we get $\Sigma^* ba \Sigma^*$.

3 { $a^{n_1}b^{n_2}c^{n_3}: n_1 < n_2$ }

We give CFG's for $\{a^{n_1}b^{n_2}c^{n_3}: n_1 < n_2\}$. The CFG's for $\{a^{n_1}b^{n_2}c^{n_3}: n_1 > n_2\}$ $\{a^{n_1}b^{n_2}c^{n_3}: n_2 < n_3\}$ $\{a^{n_1}b^{n_2}c^{n_3}: n_2 > n_3\}$ are similar. $S \rightarrow TBC$ $T \rightarrow aTb$ $T \rightarrow e$ $B \rightarrow Bb$ $B \rightarrow b$ $C \rightarrow cC$ $C \rightarrow e$

IDEA: T will generate $a^n b^n$. Then B will generate AT LEAST one b, so there will be more b's than a's. C will generate as any number of c's.

 $4 \quad \{a^{n_1}b^{n_2}c^{n_3}: n_1 < n_3\}$

We give CFG's for $\{a^{n_1}b^{n_2}c^{n_3}: n_1 < n_2\}$. The CFG's for

 $\{a^{n_1}b^{n_2}c^{n_3}: n_1 > n_3\}$ is similar. $S \to aTcC$ $T \to aTc$ $T \to B$ $B \to bB$ $B \to e$ $C \to cC$ $C \to c.$

IDEA: T will generate a^nTc^n . Then C will generate at least one more c. Then T will generate any number of b's.