
CFL’s are in P

1 Introduction

In this manuscript we prove that if L is a Contex Free Language (CFL) then
L ∈ P . In paticular, L can be solved in time O(n3).

We need the following definitions before we can say what our steps are

Notation 1.1

1. Capital letters are nonterminals. Small letters are terminals (elements
of Σ). σ ∈ Σ.

2. Let α, β ∈ (N ∪Σ)∗. α→∗G β means that starting from α if you apply
some finite number of productions you end up with β.

Def 1.2 Let G be a context free grammar.

1. G is e-free if there are no productions of the form A→ e.

2. A unit prodution is a production of the form A→ B.

3. G is in Chomsky Normal Form if every production is of the form either
A→ BC or A→ σ

Here is our rough plan. For this high level descrption we ignore the case
where e ∈ L(G).

1. We give a procedure that will take a CFG G such that e /∈ L(G) and
return an e-free CFG G′ such that L(G) = L(G′).

2. We give a procedure that will take a CFG G with no e-productions
and return a CFG G′ with no e-production AND no unit productions
such that L(G) = L(G′).

3. We give a procedure that takes a CFG G with no e-productions and
no unit productions and return a grammar G′ in Chomsky Normal
Form such that L(G) = L(G′).

4. We show that if G is in Chomsky Normal Form then there exists an
O(n3) time algorithm for L(G).

Note 1.3 Better algorithms are known. Let ω be the constant on matrix
multiplication. Then there is an algorithm for CFL’s that is in time O(nω).

1

2 Getting Rid of e-Productions

Theorem 2.1 There is an algorithm that does the following: Given a gram-
mar G (1) Determine if e ∈ L(G), and (2) (in any case) return an e-free
grammar G′ such that L(G′) = L(G)− {e}.

Proof: Do the following procedure until either there are no e-productions
or there is one and it is S → e.

1. If there exists a production of the form A → e (A 6= S) then do the
following:

(a) Remove the production A→ e.

(b) For every production of the form

B → αAβ

add the production

B → αβ.

(Note- you still KEEP the production B → αAβ.)

If at the end there are NO e-productions then e /∈ L(G) and the resulting
grammar is G′. If at the end there are is the e-productions S → e then
e ∈ L(G) and let G′ be the resulting grammar MINUES S → e.

3 Getting Rid of Unit Productions

Def 3.1 Let G = (N,Σ, P, S) be a CFG. A production of the form A→ B
is a unit production.

Theorem 3.2 There exists an algorithm that will, given a CFG G = (N,Σ, P, S)
with no e-productions, will output a grammar G′ = (N ′,Σ, P ′, S′) with no
e-production AND no unit productions such that L(G) = L(G′).

Proof: We give the algorithm, show that it works in the correct time,
but do not prove that it works.

We use ⇒ to mean →∗G. We first find all A,B ∈ N such that A ⇒
B. Since there are no e-productions this is easy and only involves unit-
productions. Formally we make a directed graph out of all of the nonter-
minals, with an edge between X and Y if X → Y . Then, all pairs A,B

2

such that there is a directed graph from A to B are all the pairs such that
A⇒ B.

Let the set of all (A,B) such that A⇒ B be called SUPERUNITS.

3

1. Let PROD be P minus the UNIT productions.

2. Find the set of SUPERUNITES.

3. For all SUPERUNITS A⇒ B do

(a) For all productions in PROD of the formX → α1Aα2A · · ·αL−1AαL

add all productions that replace some of the A’s with B’s (there
will be 2L−1 new productions). Note that these new productions
will NOT be unit productions.

4 Chomsky Normal Form

Def 4.1 A grammar Let G = (N,Σ, P, S) is in Chomsky Normal Form if
every production is either of the form A→ BC or A→ σ where σ ∈ Σ.

Theorem 4.2 There exists an algorithm that will, given a CFG G = (N,Σ, P, S)
with no e-productions, no unit productions, output a grammar G′ = (N ′,Σ, P ′, S′)
in Chomsky Normal Form such that such that L(G) = L(G′).

Proof:
Look at each rule of the form A→ α1α2 · · ·αL.

1. If L = 2 and α1, α2 are nonterminals then leave this production alone.

2. If L = 2 and at least one of α1, α2 is a terminal OR if L ≥ 3 then we
do the following:

(a) Replace every terminal αi with nonterminal [αi] and add the rule
[αi]→ αi.

(b) Note that the rule is now of the form

A→ β1 · · ·βL
where each βi is a nonterminal.

Replace this with the following:

A→ [β1 · · ·βL−1]βL
[β1 · · ·βL−1]→ [β1 · · ·βL−2]βL−1
[β1 · · ·βL−2]→ [β1 · · ·βL−3]βL−2
etc until

[β1β2β3]]→ [β1β2]β3
[β1β2]→ β1β2.

4

5 CFL’s in P

Theorem 5.1 If L is a CFL then L is in O(n3).

Proof: If L = ∅ then L is in O(n3) time. Apply the procedure in
Theorems 2.1 and 3.2 to determine if e ∈ L(G) and also to obtain a G′

such that L(G′) = L(G)− {e}.
We show that L(G′) is in O(n3). This time does not count for the

algorithm. This time is preprocessing.
We use DYNAMIC PROGRAMMING! Intuitively: Given a string w =

w1w2 . . . wn we want to look which nonterminals A can produce wi · · ·wj .
We do this, first for i = j (that is j− i = 0) then for j− i = 1, j− i = 2, etc.
The KEY is that D generates wiwi+1 . . . wj iff D → BC and B generates a
prefix, say wi · · ·wk, and C generates the remaining suffice, say wk+1 · · ·wn.

The KEY definition is

A[i, j] = {B | B ⇒ wi · · ·wj}.

The formal algorithm is on then page.
There are O(n2) spaces in the array to fill out. Each one takes at most

O(n) to fill out.

5

CFL’s in P

f o r i=1 to n
A[i , i] = {B | B → wi}

f o r d=1 to n−1
f o r i=1 to n−d

j=i+d
A[i , j] =

⋃
i≤k<j{D | B ∈ A[i, k] ∧ C ∈ A[k + 1, j] ∧D → BC}

I f S ∈ A[1, n] then output YES, e l s e output NO.

6

