A CFL that has a LARGE CFG but a small CSL

Exposition by William Gasarch

1 Introduction

In this section we give an example, due to Ellul et al [EKSW05], of a CFL L_n whose CFG has to be large, but whose CSG is small.

Def 1.1 A CFG $G = (N, \Sigma, S, R)$ is in **Chomsky Normal Form** if every rule in R is either of the form $A \rightarrow BC$ or $A \rightarrow \sigma$ where $A, B, C \in N$ and $\sigma \in \Sigma$.

The following definition is not standard but it will help us standardize things.

Def 1.2 A CSG $G = (N, \Sigma, S, R)$ is in **Chomsky Normal Form** if every rule in R is either of the form $A \rightarrow CD$ OR $AB \rightarrow CD$ OR $A \rightarrow \sigma$ where $A, B, C, D \in N$ and $\sigma \in \Sigma$.

In this manuscript e will assume that CFG’s and CSL’s are in Chomsky Normal Form and we will measure the size of a grammar by the number of nonterminals.

2 The Proof

Def 2.1 If F is a finite set then $\text{PERM}(F)$ is the set of all permutations of elements of F. Note that $\text{PERM}(F)$ has $|F|!$ elements.

Lemma 2.2 Let $0 < \beta < 1$. Then

$$
\frac{n!}{(\beta n)!((1-\beta)n)!} = \Theta\left(\frac{1}{\sqrt{n}} \left(\frac{1}{(1-\beta)^{1-\beta}}\right)^n\right)
$$

Proof:

By Stirling’s Formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. We use this in the form $n! = \Theta(\sqrt{n} \left(\frac{n}{e}\right)^n)$. We omit the symbol Θ in our calculations.

$$
(\beta n)!((1-\beta)n)! \sim \sqrt{\beta n} \left(\frac{\beta n}{e}\right)^{\beta n} \sqrt{(1-\beta)n} \left(\frac{(1-\beta)n}{e}\right)^{(1-\beta)n}
$$
\[
\frac{\sqrt{\beta(1 - \beta)^n}}{e^n} \beta n^\beta n (1 - \beta)^{n(1 - \beta)n} = \frac{\sqrt{\beta(1 - \beta)^n}}{e^n} (1 - \beta)^n \left(\frac{\beta}{1 - \beta} \right)^{\beta n}
\]

Inverting this and multiplying by \(\sqrt{n} \left(\frac{\beta}{e} \right)^n\) yields

\[
\sqrt{n} \left(\frac{n}{e} \right)^n \frac{e^n}{\sqrt{\beta(1 - \beta)^n}} \frac{1}{(1 - \beta)^n} \left(\frac{1 - \beta}{\beta} \right)^{\beta n} = \frac{1}{\sqrt{n}} \left(\frac{1 - \beta}{\beta} \right)^{\beta n}
\]

\[
\frac{1}{\sqrt{n}} \left(\frac{1 - \beta}{\beta} \right)^{\beta n - 1} = \frac{1}{\sqrt{n}} \left(\frac{1}{(1 - \beta) \beta^\beta} \right)^n
\]

Def 2.3 If \(n \in \mathbb{N}\) then \([n] = \{1, \ldots, n\}\)

Theorem 2.4 For all \(n\) there exists a language \(L_n\) such that

1. Any Chomsky Normal Form CFG for \(L_n\) requires \(\Omega\left(\frac{1.89^n}{n^{3/2}} \right)\) nonterminals.

2. There is a CSL for \(L_n\) that has \(O(n^2)\) nonterminals.

Proof:

Let \(\Sigma = [n]\) and \(L_n = \text{PERM}(\Sigma)\).

1) Let \(G = (N, \Sigma, S, P)\) be a Chomsky Normal Form Grammar for \(L_n\). We assume that every element of \(N\) is used in some derivation of an element of \(L_n\). We show that \(|N| = \Omega\left(\frac{1.89^n}{n^{3/2}} \right)\).

Def 2.5 If \(A\) is a nonterminal then \(\text{GEN}(A) = \{w \mid A \Rightarrow w\}\).

Claim 1: For all nonterminals \(A\) there exists a set \(F \subseteq [n]\) such that \(\text{GEN}(A) \subseteq \text{PERM}(F)\).

Proof of Claim 1:

2
Let $v, v' \in GEN(A)$. Then there exists u, x, u', x' such that

$$S \Rightarrow uAx \Rightarrow uvx \in PERM(\Sigma)$$

and

$$S \Rightarrow u'Ax' \Rightarrow u'v'x' \in PERM(\Sigma).$$

Clearly we also have

$$S \Rightarrow u'vx' \in PERM(\Sigma).$$

Hence v and v' must contain exactly the same letters (though they may be in a different order).

Let F be the set of letters in v. Clearly $GEN(A) \subseteq PERM(F)$.

End of Proof of Claim 1

Def 2.6 If A is a nonterminal then let $F(A)$ be the set F proven to exist in the above claim.

Def 2.7 Let $w \in L_n$ and let T be a the parse tree for $w \in L(G)$. Let A be a nonterminal that appears in the tree. Then $LE(A)$ is the set of leaves that are in the tree below A.

Claim 2: Let $w \in L_n$. There exists $(A, u, v, x) \in N \times \Sigma^* \times \Sigma^* \times \Sigma^*$ such that $w = uvx$, $v \in GEN(A)$, and $n/3 \leq |v| \leq 2n/3$.

Proof of Claim 2:

Look at the Parse tree for w. Since G is in Chomsky Normal Form the parse tree is binary. Start at the root. At every decision point goto the side that has the most leaves. Let B be the label on the first node such that the $LE(B) \leq n/3$. Let A be the parent of B. A has two children B and C. Note that $LE(A)$ has MORE THAN $n/3$ nodes below it since B is the FIRST node that has $LE(B) \leq n/3$ nodes below it. Also note that since $LE(B) \leq n/3$ and $LE(C) \leq LE(B)$,
\[LE(C) \leq n/3. \] Hence \[LE(A) = LE(B) + LE(C) \leq 2n/3. \] Hence it’s easy to see that \(n/3 \leq LE(A) \leq 2n/3. \) Let \(v \) be the word generated by \(A \) in this parse. Clearly \(n/3 \leq |v| \leq 2n/3. \)

End of Proof of Claim 2

Let \(N \) be the set of nonterminals of \(G \). We map \(L_n \) to \(N \times [n] \). Given \(w \in L_n \) find \((A, u, v, x) \) as in Claim 2. Let \(i = |u| + 1 \), so \(i \) is where the \(v \)-part starts. Map \(w \) to \((A, i) \).

We upper bound the size of the inverse image of any \((A, i) \in N \times [n] \) and then use that to lower bound \(|N| \).

Let \((A, i) \in N \times [n] \). How many \(w \) can map to it? Let \(w = uvx \) where \(v \) begins at the \(i \)th spot and \(n/3 \leq |v| \leq 2n/3. \) Note that all of the \(w \)'s that map to \((A, i) \) have the same \(|v| \), namely \(|F(A)| \). We denote this by \(r \) and note that \(n/3 \leq r \leq 2n/3. \)

\(v \in PERM(F(A)) \). There are at most \(r! \) such strings. The \(ux \) must be a perm of union of the letters in \(u \) and the letters in \(x \). Hence \(ux \in PERM(\Sigma - F(A)) \). There are \((n - r)! \) such strings. Hence there are at most \(r!(n - r)! \) elements mapping to \((A, i) \). This is maximized when \(r = n/3 \) (or \(r = 2n/3. \)). So each element of \(N \times [n] \) has at most \((n/3)!(2n/3)! \) elements in the inverse image. Hence we get

\[
n! \leq \sum_{A \in N, i \in [n]} (n/3)!(2n/3)! \leq |N|n(n/3)!(2n/3)!
\]

Hence

\[
|N| \geq \frac{1}{n(n/3)!(2n/3)!} n!
\]

By Lemma 2.2

\[
\frac{n!}{(n/3)!(2n/3)!} = \Theta \left(\frac{1}{\sqrt{n}} \left(\frac{1}{(1/3)^{1/2}} \right)^{n/3} \right) = \Theta \left(\frac{1.89n}{\sqrt{n}} \right).
\]

Hence

\[
|N| \geq \Theta \left(\frac{1.89n}{n^{3/2}} \right).
\]
2) We give a CSL for L that has $O(n^2)$ nonterminals.

\[S \rightarrow A_1 A_2 \cdots A_n \]
\[A_i A_j \rightarrow A_j A_i \text{ for all } 1 \leq i < j \leq n \]
\[A_1 \rightarrow 1 \]
\[A_2 \rightarrow 2 \]
\[\vdots \]
\[A_n \rightarrow n \]

This CSL is not in Chomsky Normal Form; however, it is easy to convert it to such without changing the number of nonterminals by too much.

References