
Decidable, Undeciable, and Beyond
Exposition by William Gasarch

1 Defining Decidable

How to pin down what is meant by “computable?” This definition is moti-
vated by actual computers and resembles a machine. The definition is similar
to that of a Deterministic Finite Automaton, or Push Down Automaton, but
it can do much much more. Keep in mind that our final goal is to show that
this model can compute a lot of functions.

We first give the formal definition, and then explain it intuitively.

Def 1.1 A Turing Machine M is a quintuple (Q,Σ, δ, q0, h) where

1. Q is a finite set of states

2. Σ is the alphabet (the function computed by the Turing Machine will
go from Σ∗ to Σ∗), It contains a special symbol B which stands for
BLANK.

3. δ is the next move function, it goes from (Q − {h}) × Σ to Q × {Σ ∪
{L,R}}

4. q0 ∈ Q is the start state

5. h ∈ Q is the halting state

The machine acts in discrete steps. At any one step it will read the symbol
in the “tape square”, see what state it is in, and do one of the following:

1. write a symbol on the tape square and change state,

2. move the head one symbol to the left and change state,

3. move the head one symbol to the right and change state.

We now formally say how the machine computes a function. This will be
followed by intuition.

1

Def 1.2 Let M be a Turing Machine. An Instantaneous Description (ID)
of M is a string of the form α1qα2 where α1, α2 ∈ Σ∗, q ∈ Q, and the last
symbol of α2 is not B. Intuitively, an ID describes the current status of the
TM and Tape.

Def 1.3 Let M be a Turing Machine. Let α1, α2, α3, α4 ∈ Σ∗, and q, q′ ∈ Q.
Let α1 = x1x2 · · ·xk, and α2 = xk+1xk+2 · · ·xn. The symbol α1qα2 `M α3q

′α4

means that one of the following is true:

1. δ(q, xk) = (q′, y), α3 = x1x2 · · ·xk−1y and α4 = α2.

2. δ(q, xk) = (q′, L), α3 = x1x2 · · ·xk−1 and α4 = xkxk+1 · · ·xn.

3. δ(q, xk) = (q′, R), α3 = x1x2 · · ·xk+1 and α4 = xk+2xk+3 · · ·xn.

Intuitively, the above definition is saying that if the Turing Machine is in
ID C, and C `M D, then after one more move the TM will be in D. The
next definition is about what will happen after many moves.

Def 1.4 If C and D are IDs then C `∗M D means that either C = D or there
exist a finite set of IDs C1, C2, . . . , Ck such that C = C1, for all i, Ci `M Ci+1,
and Ck = D.

Def 1.5 Let M be a Turing Machine. Recall that the partial function com-
puted by Turing Machine M is the following partial function: f(x) is the
unique y (if it exists) such that xq0 `∗M yh. If no such y exists then M(y) is
said to diverge.

Intuitively we start out with x laid out on the tape, and the head looking
at the rightmost symbol of x. The machine then runs, and if it gets to the
halt state with the condition that there are only blanks to the right of the
head, then the string to the left of the head is the value f(x).

For examples of Turing machines, and exercises on building them to do
things, see Lewis and Papadimitriou’s text “Elements of the Theory of Com-
putation.”, or the Hopcroft-Ullman White book. Other books also contain
this material.

Note that, just like a computer, the computation of a Turing machine is
in discrete steps.

2

Def 1.6 Let Me be a Turing Machine and s be a number. The partial
function computed by Me,s is the function that, on input x, runs Me(x) for
s steps and if it has halted by then, outputs whatever Me(x) output, else
diverges.

Note that the function computed by Me,s is intuitively computable. Al-
though it is a partial function we can tell when it will be undefined so we
can think of it as being total.

Notation 1.7 If M(y) is defined we write M(y) ↓. If M(y) diverges then
we write M(y) ↑.

2 Variations of a Turing Machine

There are many variations on Turing Machines that could be defined- allow-
ing extra tapes, extra heads, allowing it to operate on a two dimensional grid
instead of a one dimensional tape, etc. All of these models end up being
equivalent. This adds to the intuition that Turing Machines are powerful.

Def 2.1 A k-tape Turing Machine is a quintuple (Q,Σ, δ, q0, h) such that Q,
Σ, q0, and h are as in a normal Turing Machine, but δ is a function from
(Q − {h}) × Σk into Q × {Σ ∪ {L,R}}k. A configuration is a k-tuple of
strings of the form αqβ where q ∈ Q, α, β ∈ Σ∗ the last symbol of β is not B
(where B is the special blank symbol), and all the q in all the tuples are the
same. If the input is x then the standard initial configuration is formed by
assuming that x is on the first tape, the head on the first tape is pointing to
the rightmost symbol of x, and on all other tapes the head is at the leftmost
symbol of the tape.

It turns out that extra tapes do not increase power.

Theorem 2.2 If f can be computed by a k-tape Turing Machine then f can
be computed by an ordinary Turing Machine.

A careful analysis of the proof of the above theorem reveals that the 1-
tape machine is not that much more inefficient then the equivalent 2-tape
machine. In particular, we have actually shown that if the 2-tape machine

3

halts on inputs of length n in T (n) steps, then the 1-tape machine will halt, on
inputs of length n, in T (n)2 steps. While this is not important for recursion
theory, it will be a significant fact in complexity theory. The best known
simulation of a multitape Turing Machine by a fixed number of tape machine
is that any function f that can be computed by k-tape Turing Machine in
T (n) steps on inputs of length n can be computed by a 2-tape machine in
T (n) log T (n). (See Hopcroft-Ullman, the White book.)

Other enhancements to a Turing Machine such as extra heads, two-
dimensionality, allowing a 2-way infinite tape, do not add power. Note that
a Turing Machine with many added features resembles an actual computer.
Exercise Discuss informally how to convert various variants of a Turing
Machine to a 1-tape 1-head 1-dim Turing Machine. Comment on how runtime
and number of states are affected.

3 Godelization

By using variations of Turing Machines it would not be hard to show that
standard functions such as addition, multiplication, exponentiation, etc. are
all computable by Turing Machines. We wish to examine functions that, in
some sense, take Turing Machines as their input. In order to do this, we must
code machines by numbers. In this subsection we give an explicit coding and
its properties. The actual coding is not that interesting or important and
can be skipped, but should at least be skimmed to convince yourself that it
really can be carried out. The properties of the coding are very important. A
more abstract approach to this material would be to DEFINE a numbering
system as having those properties. We DO NOT take this approach, but will
discuss it at the end of this section.

Def 3.1 A Godelization is an onto mapping from N to the set of all Turing
Machines such that given a Turing Machine, one can actually find the number
mapped to, and given a number one can actually find the Turing Machine
that maps to it.

We define a Godelization. Let M = (Q,Σ, δ, q0, h) be a Turing Machine.
We assume the following:

• there are n+ 1 states labeled 1,2,3,. . . , n+ 1,

4

• state n+ 1 is the halting state,

• the alphabet is the numbers 3,4,5. . . ,m.

• L,R are represented by the numbers 1 and 2. (We still denote L and
R by L and R. Note that L and R have numbers different from those
in the alphabet.)

We first show how to encode a rule as a number:
Let q1, q2 ∈ Q and σ1, σ2 ∈ Σ. (By our convention, q1, q2, σ1, σ2 are

numbers). The rule
δ(q1, σ1) = (q2, σ2)

is represented by the number 2q13σ15q27σ2 . The representations for rules that
have L or R in the last component are defined similarly. In any case we
denote the rule that says what δ(q, σ) does by c(q, σ).

We now code the entire machine M as a number. Let pi denote the ith
prime. Let 〈−,−〉 be such that the map (i, j) → 〈i, j〉 is a bijection from
N×N to N which is computable by a Turing Machine. The Turing Machine
M is coded by the number

C(M) =
n∏
i=1

m∏
j=1

p
c(i,j)
〈i,j〉

With our current coding, although all Turing Machines correspond to
numbers, not all numbers correspond to Turing Machines. We alleviate this
by convention:

Def 3.2 Turing Machine Mi is the machine corresponding to number i, if
such a machine exists, and is the machine ({q}, {a}, δ, q, q) where δ(q, a) =
(q, a), (i.e. the easiest machine that halts on all inputs) otherwise. The
function computed by Mi is denoted ϕi We may also say that i is the index
of Mi or ϕi.

It is easy to see that a program could be written to, given a Turing
Machine M , find x such that M = Mx. (We will later be assuming that a
Turing Machine could carry out such a task). It is also easy to see that a
program could be written to, given a number x, determine Mx.

The number x codes all the information about Mx that one might wish
to know.
Exercise Informally show that the following functions are computable:

5

• Given x, determine the number of states in Mx.

• Given x, determine the number of symbols in the alphabet of Mx.

• Given numbers x, y, s, determine if Mx halts on y in less than s steps.

• Given numbers x and y, produce the code for the Turing Machine that
computes the composition of the functions computed by Mx and My.

Our coding has some very nice properties that we now state as theorems.
There is nothing inherently good about the coding we used, virtually any
coding one might come up with has these properties. The properties essen-
tially say that we can treat the indices of a Turing Machines as though they
were programs. We will be using these theorems informally, without explicit
reference to them, for most of this course.

Theorem 3.3 (s−0−0o Theorem) There exists a primitive recursive func-
tion s1-1 such that for all x, y, and z

Mx(y, z) = Ms1-1(x,y)(z)

.

Intuitively this is saying that parameters and code are interchangeable.
If JAVA was being used instead of Turing Machines, the s − 0 − 0 function
would merely be replacing a READ statement with a CONST statement.

The above theorem is better known in its generalized form:

Theorem 3.4 (s − m − n Theorem) For every m and n there exists a
primitive recursive function sm-n such that for all x, 〈y1, . . . , yn+1〉, and
〈z1, . . . , zm〉

Mx(〈y1, . . . , yn+1〉, 〈z1, . . . , zm〉) = Msm−n(x,〈y1,...,yn+1〉)(〈z1, . . . , zm〉)

.

Both the s−0−0 theorem and the s−m−n theorem are proven by actually
constructing such functions. These constructions were of more interest when
they were proven than they are now, since now the notion of treating data
and parameters the same has been absorbed into our culture.

The next theorem says that there is one Turing Machine that can simulate
all others. It is similar to a mainframe: you feed it programs and inputs, and
it executes them.

6

Theorem 3.5 (Universal Turing Machine Theorem, or Enumeration Theo-
rem) There is a Turing Machine M such that M(x, y) is the result of running
Mx on y. (Note that this might diverge.)

Convention 3.6 We will always denote the Universal Turing Machine by
U .

We will be using the s−m−n Theorem and the existence of a Universal
Turing Machine, throughout this course (usually implicitly). A more abstract
approach would have been to build these two properties into definitions:

Def 3.7 An acceptable programming system (henceforth APS) is a list of all
the Turing computable functions ϕ1, ϕ2, . . . such that the s−m−n Theorem,
and the enumeration theorem are true relative to that numbering.

One concern might be that if we prove theorems for our particular APS
will it be true for all APS’s. The following theorem says YES, as it says that
all APS’s are essentially the same.

Theorem 3.8 (Rogers isomorphism theorem) Let ϕ1, ϕ2, . . . and φ1, φ2, . . .
be two APS’s. There exists a bijection f , computable by a Turing Machine,
such that ϕi ≡ φf(i).

4 Other Models and the Moral of the Story

Many models of computation have been proposed. All of them have a notion
of discrete time steps, as does a Turing Machine.

1. Turing Machines were proposed by Alan Turing in 1936.

2. λ-calculus was proposed by Alonzo Church in 1941. The λ-calculus
enables one to speak of functions from sets of functions to sets of func-
tions. The language LISP is based on λ-calculus.

3. post Systems were proposed by Emil Post in 1943. They are a gener-
alization of Grammars.

4. Wang machines were proposed by Hao Wang in 1957.

7

5. Markov Algorithms were proposed by Andrei Andreivich Markov in the
1940’s.

6. register machines were proposed by Abraham Robinson and Calvin
Elgot in the 1960’s, and Random Access Machines were proposed by
Steven Cook and Robert Rechow in the 1970’s. Both resemble an actual
computer more than most models.

These models of computation had very different motivations. Now for
the surprise: THEY ALL COMPUTE THE SAME CLASS OF (PARTIAL)
FUNCTIONS! In addition, the time loss in going from one to the other is
(in most cases) only a polynomial e.g. if a Markov algorithm can compute a
function f and use T (n) steps on inputs of length n, then there is a Turing
Machine that can computes f and takes T (n)k steps on inputs of length n.

We have been trying to formalize what it means for a function to be
“intuitively computable.” This seems like a hard concept to define rigorously.
But several people who tried to formalize this notation came to the SAME
class. This leads one to make a leap of faith and conclude that yes indeed,
this class of functions suffices:
Church’s Thesis: Any (partial) function that is intuitively computable (e.g.
we can write down a program for it in some informal language) is computable
by a Turing Machine (thus by the λ-calculus, etc.).

For the remainder of this course we will speak in terms of Turing Ma-
chines, but will virtually never have to worry about the formal details of
a machine. To show a function is computable we will write an informal
program that computes it, and show that it works.

We repeat two definitions that we made earlier, noting that in both the
term “Turing Machine” can be replaced by any of the above models.

Def 4.1 A function computed by a Turing Machine is a partial computable
function. If the function is total then we say it is computable.

We now give examples of computable functions.

1. f(x) is the xth prime, computable.

2. f(x) = x7 + 12x5, computable.

3. Ackerman’s function is computable.

8

4. Any JAVA program that halts on all inputs you can think of is com-
puting a computable function.

We give an interesting example of a partial computable function. We
want a function that will, on input e, output some PRIME that Me halts on.
If Me does not halt on any prime, then the function will be undefined.

First attempt (which will fail): run Me(2). If it halts then output 2, else
run Me(3). If it halts then output 3, else run Me(5). This will not work since
you cannot tell if Me(2) halts.

So what to do?
Well, we can try to run Me(2) for a few steps, then try Me(3) for a few

steps, then go back to Me(2) and try out various other primes as we go.
We try Me(p) for s steps for many primes p and numbers s. This process
is known as DOVETAILING. Before presenting the formal algorithm we’ll
need pairing functions.

Def 4.2 Let π1 and π2 be computable function such that the set {(π1(x), π2(x)) :
x ∈ N} is all of N× N.

Algorithm for f :

1. Input(e)

2. i := 1

FOUND := FALSE

While NOT FOUND

x := π1(i)

s := π2(i)

Run Me(x) for s steps.

If x is prime and Me(x) halts within s steps then

output(x)

FOUND := TRUE

else i := i+ 1

The algorithm looks at ALL possible pairs (x, s) and if we find that Me(x)
halts in s steps, and x is prime, then we halt. Note that if Me halts on SOME
prime then f(x) will be such a prime; however, if Me does not halt on any
prime, then the algorithm will diverge (as it should).

9

5 Some strange examples of computable func-

tions

Functions that are almost always 0 are very easy to compute: just store a
table.

Example 5.1 Let f be the function that is f(0) = 12, f(10) = 20, f(14) =
7, f is zero elsewhere. The function f is easily seen to be computable. Just
write a program with a lot of ‘if’ statements in it. It will output 0 on values
that are not 0,10, or 14.

In the above example, the function f was given EXPLICITLY so it was
easy to write the program. Even if a function is not given to us explicitly,
we may be able to show that it is computable.

Example 5.2 Let f be the function that is nonzero on values less than 10,
and on those values always outputs the input squared. From the description
we can deduce that f(1) = 1, f(2) = 4, f(3) = 9, f(4) = 16, f(5) = 25,
f(6) = 36, f(7) = 49, f(8) = 64, f(9) = 81, and f is zero elsewhere.

In the above example, even though we were not given the function ex-
plicitly, we could derive an explicit description from what was given. In the
next example this is no longer the case, but the function is still computable.

INTERESTING EXAMPLE
One needs to know what the Goldbach Conjecture to appreciate this

example: Goldbach’s conjecture is still unknown. It is: every even is the
sum of two primes.

Example 5.3 Let f be the function such that if Goldbach’s conjecture is
true then f is 74 on all numbers less than 4 and zero elsewhere, and if Gold-
bach’s conjecture is false then f is 17 on all less than 3 and zero elsewhere.
Since we don’t know whether or not Goldback’s Conjecture is true, WE DO
NOT KNOW what f is. But we DO know that EITHER

1. f(1) = 74, f(2) = 74, f(3) = 74, f(x) = 0 elsewhere, OR

2. f(1) = 17, f(2) = 17, f(x) = 0 elsewhere.

10

So THERE EXISTS a JAVA program for f . In fact, we can write down two
programs, and know that one of them computes f , but we don’t know which
one. But to show that f is computable WE DO NOT CARE WHICH ONE!
The definition of computability only said THERE EXISTS a JAVA program,
it didn’t say we could find it.

An even more interesting example:

Example 5.4 Let f be the following function: if Goldbach’s conjecture is
false then f is 888 on the the smallest even n such that n cannot be written
as the sum of two primes, and 0 elsewhere. if Goldbach’s conjecture is true
then f is always 0. If Goldbach’s conjecture is false then f is one of the
following.

1. f(2) = 888, f is zero elsewhere

2. f(4) = 888, f is zero elsewhere

3. f(6) = 888, f is zero elsewhere

4. etc.
...

The fact that this list is infinite should not bother us. It is still the case
that f is computable since one of the functions on this list is f , or f is always
0.

These functions are computable EVEN THOUGH WE CAN”T FIND
CODE FOR THEM.

If I asked you what a computable function was you might say
f is computable if there exists a TURING MACHINE to compute it.
I might say
f is computable if THERE EXISTS a Turing machine to compute it.
The key thing is that THERE EXISTS a Turing machine, even if I can’t

find it.
AN EXAMPLE OF ‘I DO NOT KNOW AND I DO NOT CARE’, that

is not related to computer science:

Example 5.5 Do there exists two irrational numbers x and y such that xy

is rational? I will show you pairs (a, b), and (c, d) such that either

11

1. a and b are irrational and ab is rational, OR

2. c and d are irrational and cd is rational.

Even at the end of the proof I won’t know which pair works.
Let a =

√
2, b =

√
2, c = (

√
2)
√
2, d =

√
2. We already know that

√
2

is irrational. If (
√

2)
√
2 is rational, then (a, b) works. If (

√
2)
√
2 is irrational

then c is irrational, d is irrational, and

cd = ((
√

2)(
√
2))
√
2 = (

√
2)2 = 2

so the pair (c, d) works. I DO NOT KNOW whether or not (
√

2)
√
2 is irra-

tional, but in either case, I get what I want, so for now I DO NOT CARE.

6 Computable and Computably Enumerable

Sets

Up to this point we have been speaking of functions. Sets are easier to study
and more flexible. Most of the rest of the course will be about sets.

Def 6.1 A set A is computable if there exists a Turing Machine M that
behaves as follows:

M(x) =
{

1 if x ∈ A,
0 if x /∈ A.

Computable sets are also called decidable or solvable. A machine such as M
above is said to decide A.

Some examples of computable sets.

1. The primes.

2. The Fibaonoacci numbers (any number in the set 1, 2, 3, 5, 8, 13, ...
where every number is the sum of the previous number). If you want
to know if a number x is a Fib number, just calculate the Fib num-
bers until you either spot x or surpass it. If you spot it then its a Fib
number, if you surpass it, its not.

3. (x, y, s) such that Mx(y) halts within s steps.

12

4. Most sets you can think of are computable.

Are there any noncomputable sets? Cheap answer: The number of SETS
is uncountable, the number of COMPUTABLE SETS is countable, hence
there must be some noncomputable sets. In fact, there are an uncountable
number of them. I find this answer rather unenlightening.

7 The HALTING Problem

In this subsection we exhibit a concrete example of a set that is r.e. but not
computable. Recall that Mx is the xth Turing Machine in the Godelization
defined earlier.

Def 7.1 The HALTING set is the set

K0 = {〈x, y〉 |Mx(y) halts }.

Let us ponder how we would TRY to determine if a number 〈x, y〉 is in
the halting set. Well, we could try RUNNING Mx on y. If the computation
halts, then GOOD, we know that 〈x, y〉 ∈ K0. And if it doesn’t halt then –
WHOOPS– if it never halts we won’t know that!! It seems hard to determine
with certainty that the machine will NOT halt EVER.

Theorem 7.2 The set K0 is not computable.

Proof:
We show that K0 is NOT computable, by using diagonalization. Assume

that K0 is computable. Let M be the Turing Machine that decides K0. Using
M we can easily create a machine M ′ that operates as follows:

M ′(x) =
{

0 if Mx(x) does not halt,
↑ if Mx(x) does halt.

Since M ′ is a Turing Machine, it has a Godel number, say e, so Me = M ′.
We derive a contradiction by seeing what Me does on e.

If M ′(e) ↓ then by the definition of M ′, we know that Me(e) does not
halt, but since M ′ = Me, we know that Me(e) does halt. Hence the scenario
that M ′(e) ↓ cannot happen. (This is not a contradiction yet)

13

If M ′(e) ↑ then by the definition of M ′, we know that Me(e) does halt’;
but since M ′ = Me, we know that Me(e) does not halt. Hence the scenario
that M ′(e) ↑ cannot happen. (This alone is not a contradiction)

By combining the two above statements we get that M ′(e) can neither
converge, nor diverge, which is a contradiction.

This proof may look unmotivated— why define M ′ as we did? We now
look at how one might have come up with the halting set if one’s goal was
to come up with an explicit set that is not decidable:

We want to come up with a set A that is not decidable. So we want that
M1 does not decide A, M2 does not decide A, etc. Let’s make A and machine
Mi differ on their value of i. So we can DEFINE A to be

A = {i |Mi(i) 6= 1}.

This set can easily be shown undecidable— for any i, Mi fails to decide it
since A and Mi will differ on i. But looking at what makes A hard intuitively,
we note that the “ 6= 1” is a red herring, and the set

B = {i |Mi(i) ↓}

would do just as well. This is essentially the Halting problem.

Corollary 7.3 The set K = {e |Me(e) ↓} is undecidable.

Proof: In the proof of Theorem 7.2, we actually proved that K is unde-
cidable.

Note 7.4 In some texts, the set we denote as K is called the Halting set.
We shall later see that these two sets are identical in computational power,
so the one you care to dub THE halting problem is not important. We chose
the one we did since it seems like a more natural problem. Henceforth, we
will be using K as our main workhorse, as you will see in a later section.

8 Computablely Enumerable Sets

K0 and K are not decidable. Well, what CAN we say about K0 that is
positive. Lets look back at our feeble attempt to solve K0. The algorithm

14

was: on input x, y, run Mx(y) until it halts. The problem was that if 〈x, y〉 /∈
K0 then the algorithm diverges. But note that if (x, y) ∈ K0 then this
algorithm converges. SO, this algorithm DOES distinguish K0 from K0.
But not quite in the way we’d like. The following definition pins this down

Def 8.1 A set A is computablely enumerable (henceforth “r.e.”) if there
exists a Turing Machine M that behaves as follows:

M(x) =
{ ↓ if x ∈ A,
↑ if x /∈ A.

Exercise Show that K and K0 are r.e.
Exercise Show that if A and B are computable then A ∩ B, A ∪ B, and A
are computable. Which of these are true for r.e. sets?

There is a definition of r.e. that is equivalent to the one given, and is
more in the spirit of the words “computablely enumerable.”

Theorem 8.2 Let A be any set. The following are equivalent:

1. A is the domain of a partial computable function (i.e. A is r.e.)

2. A is the range of a total computable function or A = ∅ (this definition
is more like enumerating a set).

Proof: We show 1)→ 2)→ 1).
1)→ 2): Let A be the domain of a partial computable function f . Let M

be a Turing Machine whose domain is A. If A is empty, then 2) is established.
Assume that A is nonempty and let a ∈ A. Let g be the (total) computable
function computed by the following algorithm:

1. Input(n).

2. If n = 0 then output a.

3. Compute X = {g(0), g(1), g(2), . . . , g(n− 1)}.

4. Let Y = {0, 1, 2, . . . , n}. If Y −X is empty then output a. If Y −X is
not empty then run M on every element of Y −X for n steps. If there
is some y ∈ Y − X such that M(y) halts within n steps then output
the least such y. Else output a.

15

We show that range(g) =domain(f). If y is in the range of g then it must be
the case that M(y) halted, so y is in the domain of f . If y is in the domain of
f then let n be the least number such that M(y) halts in n steps and y ≤ n.
If there is some m < n such that g(m) = y then we are done. Otherwise
consider the computation of g(n). In that computation y ∈ Y but might
not be output if there is some smaller element of Y . The same applies to
g(n + 1), g(n + 2), If there are z elements smaller than y in A then one
of g(n), g(n+ 1), . . . , g(n+ z) must be y.

2)→ 1). Assume that A is either empty or the range of a total computable
function. If A is empty then A is the domain of the partial computable
function that always diverges, and we are done. Assume A is the range of
a total computable function f . Let g be the partial computable function
computed by the following algorithm:

1. Input(n).

2. Compute f(0), f(1), . . . until (if it happens) you discover that there is
an i such that f(i) = n. If this happens then halt. (if it does not, then
the function will end up diverging, which is okay by us).

We show that an element n is in the range of f iff g(n) halts. If n is in the
range of f then there exists an i such that f(i) = n; this i will be discovered
in the computation of g on n, so g(n) will be 1. If g(n) halts then an i was
discovered such that f(i) = n, so n is in the range of f .

Several questions arise at this point:

• Are there any sets that are r.e. but not computable?

• Are there any sets that are NOT r.e.?

• If a set is r.e., then is its complement r.e. ?

The second question can be answered in a cheap way: since there are an
uncountable number of sets and a countable number of r.e. sets (since there
are only a countable number of Turing Machines), there are an uncountable
number non-r.e. sets. While this is true, it is not a satisfying answer. We
will give more concrete answers to all these questions.

First we relate r.e. and computable sets.

16

Theorem 8.3 A set A is computable iff both A and A are r.e.

Proof: If A is computable then A is computable. Since any computable
set is r.e. both are r.e.

Assume A and A are r.e. Let Ma be a Turing Machine that has domain
A and Mb be a Turing Machine that has domain A. The set A is computable
via the following algorithm: on input x run both Ma(x) and Mb(x) simul-
taneously; if Ma(x) halts then output YES, if Mb(x) halts then output NO.
Since either x ∈ A or x ∈ A, one of these two events must happen.

This theorem links two of our questions: there exists an r.e. set that is
not computable iff r.e. sets are not closed under complementation.

9 Undecidable sets, m-reductions, and Rice’s

Theorem

Now that we haveK undecidable, we can show that other sets are undecidable
as well. Our proofs will be along the lines of “to show that A is undecidable
we show that if A were decidable, then so would be K, thus A cannot be
undecidable.”

We start with an easy one:

Example 9.1 The set

A = {x | x− 17 ∈ K}

is undecidable. Assume that A is decidable via Turing Machine M . Using
this, we show that K is decidable.

1. Input(x)

2. Run M on the input x+ 17. (Output whatever it outputs.)

Note that x ∈ K iff x + 17 ∈ A, so the algorithm decides K. This is a
contradiction, so A is undecidable.

17

EXERCISE Show that the set

B = {x | x+ 17 ∈ K}

is undecidable.
The key part of the proof that A is undecidable is to find a very nice

question to ask M , in this case the question x + 17 ∈ A? In most proofs,
the hard part is finding the right question to ask, a question whose answer
is informative in terms of determining if x ∈ K.

We now give a harder example.

Example 9.2 Show that the set

A = {x | ϕx(17) ↓}

is undecidable. Assume A is decidable via Turing Machine M . We use M in
an algorithm to decide K.

1. Input(x)

2. Create a machine M ′ that does the following (DO NOT RUN THIS
MACHINE!!!!!!!! ONLY CREATE IT.)

(a) Input(z)

(b) Run Mx(x) (note that we are NOT using the input z here).

3. Find the Godel number y of M ′ (so ϕy is the function computed by
M ′)

4. Run M(y). (Output whatever it outputs.)

To see that this algorithm decides K note that
x ∈ K → Mx(x) ↓ → M ′ will halt on all inputs → M ′ will halt on 17 →

the Godel number of M ′ is in A → M(y) will say YES.
x /∈ K → Mx(x) ↑ → M ′ will not halt on any input → M ′ will not halt

on 17 → the Godel number of M ′ is not in A → M(y) will say NO.

18

EXERCISE In the above proof, the number 17 was not relevant. (It was
a ‘red herring’ or a ‘paper tiger’) Name some other sets for which the proof
that A is undecidable applies equally well to.

All the proofs that sets are undecidable, in this subsection, have had a
very similar flair. We now codify these proofs— that is, define some terms
and prove some theorems that will be used in all future proofs without a
need for explicit mention.

As mentioned before, the key point is finding the appropriate question (or
questions) to run M on to find out things about K. The following definitions
and theorems make this notion rigorous:

Def 9.3 Let A and B be any two sets. A is m-reducible to B, denoted
A ≤m B if there is a computable function f such that x ∈ A iff f(x) ∈ B.

The ‘m’ in the above definition is because f can be many-to-one, as
opposed to the following definition:

Def 9.4 Let A and B be any two sets. A is one-reducible to B, denoted
A ≤1 B if there is a computable one-to-one function f such that x ∈ A iff
f(x) ∈ B.

We will not be concerned with whether our reductions are 1-1 except in
an occasional exercise.

EXERCISE Show that if A ≤m B then A ≤m B. Show that if A ≤1 B
then A ≤1 B.

Theorem 9.5 If A and B are sets, B is computable, and A ≤m B, then A
is computable.

Proof: Let f be computed by M and B be decided by N . The following
algorithm decides A

1. Input(x)

2. Run M on x and call the result y (note that y is f(x)).

3. Run N on y. (Output whatever it outputs.)

x ∈ A → f(x) ∈ B → N(y) will say YES.
x /∈ A → f(x) /∈ B → N(y) will say NO.

19

Corollary 9.6 If K ≤m A then A is undecidable.

Proof: By the above theorem, if A is decidable then K is decidable. This
is a contradiction.

Corollary 9.7 If K ≤m A then A is undecidable.

Proof: Similar.

We will use Corollary 9.6 implicitly for the rest of these notes: one way
to show a set is undecidable will be to exhibit an algorithm for a reduction
f that reduces K to that set. All sets shown undecidable in this subsection
can be recast in that form. We do that:

Example 9.8 We show that the set

A = {e | ϕe(17) ↓}

is undecidable. We show K ≤m A.

1. Input(x)

2. Create a machine M ′ that does the following (DO NOT RUN THIS
MACHINE!!!!!!!! ONLY CREATE IT.)

(a) Input(z)

(b) Run Mx(x)

3. Find the Godel number y of M ′ and output it.

x ∈ K → Mx(x) ↓ → M ′ will halt on all inputs, including 17 → the
Godel number of M ′ is in A

x /∈ K → Mx(x) ↑ → M ′ will not halt on any inputs, including 17→ the
Godel number of M ′ is not in A

(MINOR comment— the above proof uses Church’s thesis in that we are
assuming that whatever we can write down and describe informally can be
carried out by a Turing Machine. For this proof, and most proofs in this
course, all we really need are the s-m-n Theorem (Theorem 3.4) and the
existence of a universal Turing Machine (Theorem 3.5).)

20

We now give MANY examples of sets that are undecidable.

Example 9.9 The set
A = {e | ϕe is total }

is undecidable. The following algorithm computes an m-reduction f of K to
A.

1. Input(x)

2. Create a machine M ′ that does the following:

(a) Input(z)

(b) Run Mx(x)

3. Output the index of M ′.

The reasoning is left as an exercise.

Example 9.10 The set

A = {e | ϕe computes the square function }

is undecidable. The following algorithm computes an m-reduction f of K to
A.

1. Input(x)

2. Create a machine M ′ that does the following:

(a) Input(z)

(b) Run Mx(x)

(c) (Note that this step will not be reached unless Mx(x) halts) Com-
pute z2 and output it.

3. Output the index of M ′.

21

x ∈ K → for all z the computation of M ′(z) will complete the computa-
tion of Mx(x) and then compute z2, so it will always output z2 → the index
of M ′ is in A.

x /∈ K → for all z the computation of M ′(z) will diverge while it is trying
to compute Mx(x) → M ′ diverges on all inputs → the index of M ′ is NOT
in A.

Example 9.11 The set

A = {e | the domain of ϕe is a noncomputable set }

is undecidable. The following algorithm computes an m-reduction f of K to
A.

1. Input(x)

2. Create a machine M ′ that does the following:

a) Input(z)

b) Run Mx(x)

c) (Note that this step will not be reached unless Mx(x) halts) Run
Mz(z)

3. Output the Godel number of M ′

x ∈ K → for all z, the computation of M ′(z) will finish step b, and
then proceed to run Mz(z), hence the domain of M ′ is K → domain(M ′) is
noncomputable → Godel number of M ′ is in A.

x /∈ K → for all z, the computation of M ′(z) will not finish step b hence
the domain of M ′ is ∅ → domain(M ′) is computable→ Godel number of M ′

is not in A.

All of these proofs look the same, so the question arises: can we prove
one GENERAL theorem of which these will all be corollaries? Is there some
property of these sets that we can exploit and generalize? The answer is
YES!

Let A be one of the sets above that is proven undecidable. The question
“Is 75 in A?” depends only on ϕ75 and not on any other property of 75.

22

Assume that ϕ75 and ϕ197 are the same partial function (e.g., both ϕ75 and
ϕ197 are the square function, or both ϕ75 and ϕ197 output 1 on elements of
K and diverge otherwise). As far as A is concerned 75 and 197 will have the
SAME status. Since the set A is only concerned with a number in so far as it
represents a partial computable function, if two numbers represent the same
partial computable function then those two numbers will either both be IN
A or both be OUT of A.

Def 9.12 An index set is a set A such that for all x, y if ϕx and ϕy both
compute the same function then either x, y ∈ A or x, y /∈ A.

Now for the big theorem:

Theorem 9.13 (Rice’s Theorem) If A is any index set such that A 6= ∅ and
A 6= N then A is noncomputable.

Proof: Let A be an index set, A 6= ∅, A 6= N. Let n be such that ϕn is
the function that diverges on all inputs. There are two cases:
Case 1: n /∈ A. Let a be some element of A (such exists since A 6= ∅). We
use a and n in the following reduction of K to A.

1. Input(x)

2. Create a machine M ′ that does the following:

(a) Input(z)

(b) Run Mx(x).

(c) (This step will only be reached if Mx(x) halts.) Run Ma(z). Out-
put whatever it outputs.

3. Output the Godel Number of M ′

If Mx(x) halts then M ′ will always get to execute the third step, so
M ′(z) = Ma(z). Let b be the Godel number of M ′. Note that ϕb and ϕa
compute the same function. Since A is an index set and a ∈ A, b ∈ A.

If Mx(x) does not halt then M ′ will diverge on all inputs. Let b be the
Godel number of M ′. Note that ϕb and ϕn compute the same function. Since
A is an index set and n /∈ A, b /∈ A.
Case 2: Assume n ∈ A. The set A is an index set and n /∈ A. Hence Case
1 applied to A shows that A is not computable, which implies that A is not
computable.

23

10 Turing Reductions

In the last section we showed that sets A were undecidable by showing that
if A was decidable, then by using a program for A we could decide K. But
we only used that program in a limited way. We only called it once.

We want a more powerful type of reduction. For example, informally it
is clear that A× A ≤ A under some type of reduction.

Def 10.1 (Informal) Let A be any set. A set B is computable in A if there
is a Turing Machine that, together with a “subroutine” for A can decide B.
The set A is called an oracle. We denote the fact that B is computable in A
by B ≤T A, and say that “B is Turing-less than A”

It is easy to see that for all sets A, A× A ≤T A.
We will not deal with Turing reductions in this course except in an oc-

casional exercise. Professional recursion theorists deal mostly with Turing
reductions.

11 Non-r.e. sets and the Extended Rice’s

Theorem

We want a general tool to show that index sets are not r.e. We already know
that K is not r.e. and will use that.

The line of reasoning in that corollary generalizes: EXERCISE Show that
if A is a noncomputable set that is r.e. then A is not r.e.

We now look at a non r.e. set that is proven non-r.e. in a different way.

Theorem 11.1 Let
TOT = {e | ϕe is total }.

The set TOT is not r.e.

Proof: Assume, by way of contradiction, that TOT is r.e. Let f be a
total computable function such that TOT is the range of f . Consider the
following function

g(x) = ϕf(x)(x) + 1.

24

It is easy to see that g(x) is total computable. Therefore there is some i such
that g is ϕf(i). BUT note that g and ϕf(i) differ on the value i, namely

g(i) = ϕf(i)(i) + 1 6= ϕf(i).

This is a contradiction, hence no such f exists and TOT is not r.e.

The technique used in the above theorem is diagonalization. It was also
used to show that the reals are uncountable, and that K is noncomputable.
It will be used later as well, but it is not that useful for showing sets other
than TOT to be non r.e.

The following theorem is very useful in showing that sets are not r.e., and
is needed to prove the extended Rice’s theorem.

Theorem 11.2 If B ≤m A and A is r.e., then B is r.e.

Proof: Let f be such that B ≤m A via f . Let g be a partial computable
function such that A is the domain of g. The following is a partial computable
function whose domain is B.

1. Input(x)

2. Compute g(f(x)).

x ∈ B iff f(x) ∈ A iff g(f(x)) ↓.

Theorem 11.3 If A is a nontrivial index set and the index for the function
that always diverges is in A, then A is not r.e.

Proof: By examining the proof of Rice’s Theorem (Theorem 9.13) note
that if B is an index set that does not contains the index for the null function,
then K ≤m B. Hence K ≤m A, so K ≤m A, and A is not r.e.

The extended Rice’s theorem has three parts. The first two are of the
form “If A is an index set and blah-de-blah then A is NOT r.e.” and the
third is of the form “If A is an index set then A is r.e. iff blahblahblah.” We
first give two proofs of sets not being r.e. to give the flavor of the first two
theorems.

25

Example 11.4 Let

A = {e | ϕeis undefined on some even number(s) }.

We show that A is not r.e. by showing that K ≤m A.

1. Input(x)

2. Create a machine M ′ that behaves as follows

(a) Input(z)

(b) Run Mx(x)

3. Output the index for M ′

We show that this works:
If x ∈ K then Mx(x) diverges, so M ′ diverges on all inputs, hence it

diverges on some (in fact all) even inputs so the index of M ′, f(x), is in A.
If x /∈ K then Mx(x) halts, so M ′ halts on all inputs, hence it halts on

all even inputs, so the index of M ′, f(x), is not in A.

Example 11.5 Let

B = {e | ϕeis defined on all of the even numbers }.

We show that B is not r.e. by showing that K ≤m B.

1. Input(x)

2. Create a machine M ′ that behaves as follows:

(a) Input(z)

(b) Run Mx(x) for |z| steps. (this is the length of the string z.) If it
halts within that time then diverge, else converge.

3. Output the index for M ′

26

We show that this works:
If x ∈ K then Mx(x) diverges. For all z, M ′(z) converges, so the function

computed by M ′ is total, and thus halts on all the evens. Therefore the index
of M ′ is in B.

If x /∈ K then Mx(x) converges. Assume Mx(x) converges in t steps. For
all z such that |z| ≥ t M ′(z) diverges. Hence the index of M ′ is not in B.

Note that the last two examples each show a set that is not r.e., and for
which the complement is not r.e.

Def 11.6 Let f and g be two partial functions. If domain(f) ⊆domain(g)
and for all x ∈domain(f) f(x) = g(x) then g is an extension of f , and f is
a contraction of g. If f has finite domain then f is a finite contraction of g.

Theorem 11.7 If A is an r.e. index set then A is closed under extensions,
i.e. if c ∈ A and d is such that ϕd extends ϕc, then d ∈ A.

Proof: We show this by showing its contrapositive, i.e. we show that if
B is an index set that is NOT closed under extensions, then B is NOT r.e.
Let B be an index set such that c ∈ B, d /∈ B and ϕd extends ϕc. We use c,
and d in the following reduction f of K to B.

1. Input(x)

2. Create a machine M ′ that does the following:

(a) Input(z)

(b) By dovetailing run Mx(x) and Mc(z) at the same time. If Mc(z)
halts, then output what it outputs and HALT. If Mx(x) halts,
then go to the next step. (If neither halts then this computation
will end up diverging).

(c) (You only reach this step if Mx(x) halted) Compute ϕd(z).

3. Output the index for M ′

27

We show that this works:
If x ∈ K then Mx(x) does not halt. Hence, on any input z the com-

putation of M ′(z) will, in step 2, always behave like Mc(z). Hence M ′ will
compute ϕc. Since B is an index set and c ∈ B, the index of M ′ is in B.
Hence f(x) is in B.

If x /∈ K then x ∈ K and Mx(x) halts. Look at what M ′ will do on input
z in step 2. There are several cases, but they all end up computing Md(z):

1. Mc(z) converges and the computation of Mc(z) finishes before the com-
putation of Mx(x), hence Mc(z) is output. Since Md is an extension of
Mc, the value output is Md(z).

2. Mc(z) converges, but the computation of Mx(x) finishes before the
computation of Mc(z). Step 3 will be reached, and the results will be
Md(z).

3. Mc(z) diverges. The computation of Mx(x) will finish and step 3 will
be reached, hence Md(z) will be output.

In any case Md(z) is output. Hence M ′ computes ϕd, and since d /∈ B, and
B is an index set, the index of M ′ is not in B. Therefore f(x) is not in B.

Combining all this reasoning we get

x ∈ K ⇐⇒ f(x) ∈ B.

Theorem 11.8 If A is an r.e. index set then every element of A “has a
finite reason for being in A” i.e. if c ∈ A then there exists d ∈ A such that
ϕd has a finite domain and ϕc extends ϕd.

Proof: We show this by showing its contrapositive, i.e. we show that if
B is an index set that does NOT have this property, then B is NOT r.e. Let
B be an index set such that c ∈ B but no finite contraction of ϕc is in B.
We use c in the following reduction f from K to B.

1. Input(x)

2. Create a machine M ′ that does the following::

28

(a) Input(z)

(b) Run Mx(x) for |z| steps. If it halts within that many steps, then
diverge.

(c) (You only reach this step if Mx(x) has not halted within |z| steps.)
Compute ϕc(z).

3. Output the index for M ′

We show that this works:
If x ∈ K then Mx(x) does not halt. Hence, on any input z the compu-

tation of M ′(z) will get to step 3, and behave like Mc(z). Hence M ′ will
compute ϕc. Since B is an index set and c ∈ B, the index of M ′ is in B.
Hence f(x) is in B.

If x /∈ K then x ∈ K and Mx(x) halts. Assume it halts in t steps. For all
inputs z, |z| ≥ t, M ′(z) will diverge. Hence M ′ has finite domain. Since the
function computed by M ′ is a finite contraction of ϕc, its index is not in B.
Therefore f(x) /∈ B.

Combining all this reasoning we get

x ∈ K ⇐⇒ f(x) ∈ B.

These two theorems are powerful and will suffice to prove that most non-
r.e. index sets are indeed not r.e. But we still lack a exact characterization of
r.e. index sets. The original Rice’s theorem (Theorem 9.13) can be restated
as:

If A is an index set then

A is computable iff (A = ∅ or A = N).

We seek a similar theorem.
Lets look at some index sets that are r.e. and see what is true of all of

them. EXERCISE Show that the following sets are r.e.

1. A = {e | ϕe is defined on 2,3 or 89}

2. B = {e | ϕe is defined on some prime}

29

3. C = {e | ϕe is defined on some element of K }

4. D = {e | ϕe is defined on at least 47 elements of K }

What do all the sets have in common? Well, if e ∈ A (B,C,D), then there
is a finite contraction of ϕe which is in A (B,C,D). BUT also, ANY extension
of that finite contraction is in A (B,C,D). The set of finite contractions is
itself somewhat nicely behaved. We need a definition to pin down what it
means for the finite contractions to be well behaved.

Def 11.9 Recall that 〈−,−〉 is a computable bijection from N × N onto N.
Let n be a natural number. The finite-domain function fn is

fn(x) =
{
y if the 〈x, y〉th bit of n is 1
undefined otherwise

The mapping n→ fn is called a canonical indexing of finite functions. Note
that not all the fn will be functions— some may have more than one y
corresponding to some x.

The representation of a finite function by a fn is very useful since from n
we can determine all information about the function. This is NOT the case
if a finite function is represented by one of its Godel numbers. EXERCISE
Show that there is no partial computable function f that behaves in any of
the following manners:

1. f(e) returns the set of ordered pairs that make up ϕe if ϕe is a finite
function.

2. f(e) returns the size of the domain of ϕe if ϕe is finite.

So having a canonical index of a finite function is far more informative
than just having a Godel number.

We are now ready to state and prove the real extended Rice’s theorem,
which is an exact characterization of r.e. index sets.

Theorem 11.10 Let A be an index set. A is an r.e. index set iff there exists
an r.e. set B such that

A = {e | (∃n ∈ B)[ϕe is an extension of fin]}

30

Proof: Assume that A is an r.e. index set. Assume that M is a Turing
Machine whose domain is A. We first show that the set of canonical indices
of finite functions in A is r.e., i.e. the set

B = {n | (∃e)[ϕe = fn and e ∈ A]}

is r.e.
The following algorithm halts on the canonical indices for finite functions

in A.

1. Input(n)

2. Build a Turing Machine Me that computes fn.

3. Run M(e)

If fn is a function whose Godel number is in A, then since A is an index
set, all Godel numbers of fn will be in A. Hence the number e will be in A,
so M(e) will halt.

If fn is a function whose Godel number is not in A, then since A is an
index set, all Godel numbers of fn will not be in A. Hence the number e will
not be in A, so M(e) will not halt.

Hence the set B is r.e. We now show that A is the set of all indices of
partial computable functions which have a finite contraction in B.

If e ∈ A then by Theorem 11.8 there exists d such that ϕd is a finite
contraction of ϕe and d ∈ A. Since B is the set of canonical indices of ALL
finite functions in A, there exists an n ∈ B such that fn = ϕd.

If e is such that there exists an n ∈ B, fn is a finite contraction of ϕe,
then there exists a Godel number d such that fn = ϕd and d ∈ A. Since ϕe
extends ϕd, and d ∈ A, by Theorem 11.7, e ∈ A.

Thus it is proven.
We now need to prove the converse: if A is of that weird form, then A is

r.e. Assume that A is such that the set B defined in the statement of this
theorem is r.e. Then A is r.e. by the following algorithm that halts only on
elements of A:

1. Input(e)

31

2. Search (by dovetailing) for an n ∈ B and a time s such that fn is a
contraction of ϕe,s. If such is found, then halt.

This only halts on elements of A: if e ∈ A then such an n exists and will
be found by the definition of B; if e /∈ A then no such n can exist, and the
algorithm will diverge while trying to look for it.

12 The Recursion Theorem

Intuitively, the recursion theorem says that a program can use its own index
as a parameter. As an example, (to be shown rigorously later) there is a
Turing machine Me such that the only input that Me halts on is e itself.
Offhand there is no obvious way to construct such a machine, since you do
not know the index of a machine until it is built, and it seems to be the case
that you need to know the index in order to build it.

Theorem 12.1 Let ϕ1, ϕ2, ϕ3, . . . be an APS. For any total computable func-
tion t there exists a number a such that

(∀x)ϕa(x) = ϕt(a)(x).

(INTUITION: Let’s say you write a JAVA program that has at the top the
statement “CONST= 0”. Call this program ϕt(0). If I come along and replace
that 0 with a 17, we will call that program ϕt(17). More generally, if that 0
is replaced by b, it is program ϕt(b). What our theorem says is that there is
some number a such that if you use a for the parameter then the program
produced is actually program a. The resulting program can be said to “Know
its own index.”)

Proof:
Let aij be the INDEX of the following function:

1. Input(x)

2. Run ϕi(j) (this might not halt)

3. (If you got to this step then ϕi(j) halted.) Let e = ϕi(j). Run Me(x).

32

Note that the function that takes (i, j) to aij is computable. All it does
is produce the INDEX of the above code. Hence the function that maps i to
aii is also computable. Since t is total computable, the function that takes i
to t(aii) is computable.

Let e be such that Me(i) = t(aii).
For any j, Maej computes the same function as Mt(ajj).
Let j = e to obtain that Majj and Mt(ajj) compute the same function.

Example 12.2 We will show that there is a partial computable function ϕa
such that the domain of ϕa is just {a}. Let t be the computable function
such that

ϕt(a)(x) =
{

1 if x = a
↑ otherwise

There exists an a such that ϕa is ϕt(a). It is easy to see that the domain of
ϕa is just {a}.

EXERCISE Show that for any computable function f there exists a com-
putable function g such that g(0) is an index for f , and for all x > 0
g(x) = f(x).

The recursion theorem is an important theorem in many branches of
recursion theory. It is the bread-and-butter of Inductive Inference. Note
that its proof did not use the HALTING problem. In fact, the undecidability
of HALT, and Rice’s theorem can be derived FROM the Recursion Theorem.
APS’s can be defined in terms of it, that is, if a programming system has an
s-m-n theorem and a Recursion theorem, then it is an APS.

Both Rogers text and Soare’s text on Recursion Theory treat the Re-
cursion Theorem as a fixed point theorem. John Case (and his students-
including our own Carl Smith) use it in the intuition described here, that is,
as a program that knows its own index. Both views are equivalent, but the
view that a program can know its own index has more intuitive appeal. In as
much as Recursion theory can have controversy, this is a controversial topic
in Recursion Theory.

12.1 Undecidable problems that are NOT based on
Turing Machines

All the undecidable problems encountered so far have been sets or functions
that deal with Turing machines. The question arises, are there any “NATU-

33

RAL” undecidable problems. One could argue that HALT actually is natural,
but we seek problems that do not mention Turing machines.

There are some such problems. The proofs that they are unsolvable usu-
ally entail showing that a Turing machine computation can be coded into
them. However they are, on the face of it, natural. We list them but do not
give proofs.

1. POST’S CORRESPONDENCE PROBLEM. Let Σ be a finite alpha-
bet.

INPUT: A = {α1, . . . , αn}, B = {β1, . . . , βn} where αi, βj ∈ Σ∗.
OUTPUT: YES if there is a word w and an integer m such that w can
be formed out of m symbols of A (repeats allowed), and also out of m
symbols in B (repeats allowed). NO otherwise. (Formally we say YES
if there exists m, i1, . . . , im, j1, . . . jm such that

αi1αi2 · · ·αim = βi1βi2 · · · βim

2. HILBERT’S TENTH PROBLEM. Given a polynomial in many vari-
ables p(x1, . . . , xn) with integer coefficients, does there exist integers
a1, . . . , an such that p(a1, . . . , an) = 0.

3. HILBERT’S TENTH PROBLEM (improvements) Given a polynomial
in just 13 variables p(x1, . . . , x13) with integer coefficients, does there
exist integers a1, . . . , a13 such that p(a1, . . . , a13) = 0.

4. CFG UNIV. Given a Context Free Grammar, does it generate EVERY-
THING.

5. CFG EQUIV. Given two Context Free Grammars, do they generate
the same set?

6. CFG NON-EMPTYNESS. Given a Context Free Grammar, does it
generate any strings?

7. OPTIMAL DPDA PROBLEM Given a Push Down Automata for a
language, and promised that the language is actually recognizable by
a deterministic Push Down Automata, find the size of the smallest
Deterministic Push Down Automaton that will recognize it.

34

8. WORD PROBLEM FOR GROUPS (If you do not understand this
problem do not worry, the point is that there are unsolvable problems
in a branch of math called Group theory, which is NOT a branch of
Logic or Recursion Theory.) Given a group by generators and relations,
and then given a word, is it the identity?

9. TRIANGULATION PROBLEM FOR MANIFOLDS (Even if you do
not understand this problem the point is that there are undecidable
problems in Geometry.) Given two triangulations of four-dimensional
manifolds, are those manifolds homeomorphic?

13 Sets that are even harder than HALT

Are there sets that are even “harder to decide” then HALT? We first say
what this means formally:

Def 13.1 If A ≤T B, but B 6≤T A, then B is harder than A.

In this section we exhibit sets that are harder than K but do not prove
this.

Recall that K can be written as

K = {e | (∃s)Me(e) halts in s steps }.

Note that we have one quantifier followed by a COMPUTABLE statement.
How can TOT be written:

TOT = {e | (∀x)(∃s)Me(x) halts in s steps}.

This is two quantifiers followed by a computable statements.
It turns out that TOT cannot be written with only one quantifier and

is harder than K. We can classify sets in terms of how many quantifiers it
takes to describe them. Adjacent quantifiers of the same type can always be
collapsed into one quantifier.

Def 13.2 Σn is the class of all sets A that can be written as

A = {x | (∃y1)(∀y2) · · · (Qyn)R(x, y1, y2, . . . , yn)},

where R is a computable relation and Q is ∃ if i is odd, and ∀ if i is even.

35

Def 13.3 Πn is the class of all sets A that can be written as

A = {x | (∀y1)(∃y2) · · · (Qyn)R(x, y1, y2, . . . , yn)},

where R is a computable relation and Q is ∀ is i is odd, and ∃ if i is even.

Def 13.4 A set is Σn-complete if A ∈ Σn and for all sets B ∈ Σn, B ≤m A.

We now state a theorem without proof.

Theorem 13.5 For every i there are sets in Σi−Πi, there are sets in Σi+1−
Σi, there are Σi-complete sets, and there are Πi-complete sets.

Exercise (You may use the above Theorem.) Show that a Σi-complete set
cannot be in Πi.
Exercise Show that K is Σ1-complete. Show that K is Π1-complete.
Exercise Show that if A is Πi-complete then A is Σi-complete.

We show that FIN (the set of indices of Turing machines with finite
domain) is in Σ2 and that COF (the set of Turing machines with cofinite
domains) is in Σ3. It turns out that FIN is Σ2-complete, and COF is Σ3-
complete, though we will not prove this. As a general heuristic, whatever
you can get a set to be, it will probably be complete there.

FIN = {e | (∃x)(∀y, s)[If y > x then Me,s(y) ↑}

COF = {e | (∃x)(∀y)(∃s)[If y > x then Me,s(y) ↓}

36

