1. (0 points) What is your name? Write it clearly. Staple your HW. When is the midterm?

2. (30 points) Write a Regular Expression for the languages A, B, C below. The alphabet is $\{a, b\}$.

 (a) $A = \{w \mid abab$ is a suffix of $w\}$
 (b) $B = \{w \mid$ the third to the last symbol of w is a b$\}$
 (Examples: $aaabaa, abaaaaabab$.)

3. (30 points) Consider the following alternative proof that if L is accepted by a DFA then L has a regular expression.

 L is accepted by DFA $(Q, \Sigma, \delta, s, F)$.

 Let $S(i, j, k)$ be the set of all string w such that $\delta(i, w) = j$ via a route that uses AT MOST k STATES AS INTERMEDIARIES

 (a) What is $S(i, j, 0)$.
 (b) Write $S(i, j, k)$ in terms of $S(i', j', k - 1)$ in such a way that this can used to prove that if all $S(i', j', k - 1)$ can be expressed as a regular expression then so can $S(i, j, k)$.

4. (40 points)

 (a) Write an NDFA for the language

 $$L_3 = \{w \mid$ the third to the last symbol of w is a b$\}$$

 (b) Use the NDFA to DFA conversion to write a DFA for L_3. How many states does it have.

 (c) Let $n \in \mathbb{N}$. Write an NDFA for the language

 $$L_n = \{w \mid$ the n-to the last symbol of w is a b$\}$$

 You may use DOT-DOT-DOT notation.

 (d) If you were to do the NDFA to DFA conversion for the DFA for L_n then how many states would it have when minimized? Argue why this is true informally.