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Abstract

A fundamental problem in computer science is stated informally as: Given a problem,
how hard is it?We measure hardness by looking at the following question:Given a set A
what is the fastest algorithm to determine if “x ∈ A?” Wemeasure the speed of an algorithm
by how long it takes to run on inputs of length n, as a function of n. For example, sorting
a list of length n can be done in roughly n log n steps.

Obtaining a fast algorithm is only half of the problem. Can you prove that there is
no better algorithm? This is notoriously difficult; however, we can classify problems into
complexity classes where those in the same class are roughly equally hard.

In this chapter, wedefinemany complexity classes and describing natural problems
that are in them. Our classes go all the way from regular languages to various shades of
undecidable. We then summarize all that is known about these classes.

1. INTRODUCTION

A fundamental problem in computer science is stated informally as:
Given a problem, how hard is it?

For a rather concrete problem, the answer might be it will take 2 h of
computing time on a supercomputer or this will take a team of 10 programmers
2 years to write the program. For a class of problems of the same type (e.g.,
sort a list), the complexity usually depends on the input size. These are the
kinds of problems we will consider. Our concern will usually be how much
time or space the problem takes to finish as a function of the input size. Our
problems will be static, usually set membership: Given a string x is it in set
A or not?

Example 5.1 Given a string x ∈ {0, 1}n we want to know if it is in 0∗
(a string of all 0’s). An algorithm for this problem is to scan the string and
keep track of just one thing: have you seen a 1 or not? As soon as you
do, stop and output NO. If you finish the scan and have not seen a 1 then
output YES. Note that this take O(n) steps and O(1) space, and scanned
the input once. Languages like this are called regular or DSPACE(O(1)) (we
will define this later).
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Classifying Problems into Complexity Classes 241

Example 5.2 Given a string x ∈ {0, 1}n we want to know if the number
of 0’s equals the number of 1’s. An algorithm for this problem is to scan the
string and keep track of just two things: the number of 0’s and the number
of 1’s. At the end of the scan, see if they are the same. If so, then output
YES else output NO. This again takes O(n) steps. How much space does
it take? We have to store 2 numbers that are between 0 and n so this takes
O(log n) space. Languages like this are called DSPACE(O(log n)) (we will
define this later). This particular language is also called context free; however,
we will not be discussing that class in this chapter.

Most of the sections of this chapter define a complexity class and gives
some natural problems in it. In all cases, we are talking about worst case.
For example, if we say that a problem requires n2 steps we mean that for
any algorithm there is an input of length n where it takes n2 steps. As such,
some of the problems discussed may not be as complex in real life if the
inputs are not the bad ones. We won’t discuss this further except to say that
a problem might not be quite as bad as it appears here.

We then have additional sections: (1) a look at other complexity
measures, (2) a summary of what we’ve done, (3) a literal discussion what is
a natural problem,

The natural problems we consider are mainly from graph theory, games,
formal language theory, and logic. A good reference for some of the
problems in logic (with proofs) is a book by Ferrate and Rackoff [1]. There
are many natural problems in other areas (e.g., model checking, artificial
intelligence, Economics, Physics); however, to even define these problems
would be difficult in a chapter of this nature.

There are many complexity classes that we do not discuss in this chapter.
How many complexity classes are there? Literally hundreds. The website
Complexity Zoo [2] currently lists around 500.

2. TIME AND SPACE CLASSES

The material in this chapter is due to Hartmanis and Stearns [3].
We want to classify problems by how much time or space they take to

solve as a function of the length of the input. Say the input is of size n. If
the algorithm takes n steps or n/2 steps or 10n steps, we do not want to care
about those differences. While the difference between n and 100n matters
in the real world, as a first cut at the complexity it does not. We need a way
to say we don’t care about constants.
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242 William Gasarch

Definition 5.3 Let f be a monotone increasing function from N to N.
1. O(f ) is the class of all functions g such that there exists a constants n0, c

such that (∀n ≥ n0)[ g(n) ≤ cf (n)].
2. �(f ) is the class of all functions g such that there exists a constants n0, c

such that (∀n ≥ n0)[ g(n) ≥ cf (n)].
When we define problems we code everything into strings over an

alphabet. We are concerned with the complexity of a set of strings.

Notation 5.4 Let A and B be sets.
1. AB = {xy | x ∈ A AND y ∈ B}.
2. Ai is A · · ·A (i times). If i = 0, then A0 is the empty string.
3. A∗ = A0 ∪ A1 ∪ A2 ∪ · · ·
Notation 5.5 Let � be a finite alphabet (often {a, b} or {0, 1}). A problem
is a set A ⊆ �∗. The problem is to, given x, determine if x is in A.

Convention 5.6 We will use the term Program informally. To formalize it,
we would define a Turing Machine.

Definition 5.7 Let T be a monotone increasing function from N to N.
DTIME(T(n)) is the set of all sets A ⊆ �∗ such that there exists a program
M such that
1. If x ∈ A, then M(x) = YES.
2. If x /∈ A, then M(x) = NO.
3. For all x, M(x) takes time ≤ O(T(|x|)).
Definition 5.8 Let S be a monotone increasing function from N to N.
DSPACE(S(n)) is the set of all sets A ⊆ �∗ such that there exists a program
M such that
1. If x ∈ A, then M(x) = YES.
2. If x /∈ A, then M(x) = NO.
3. For all x, M(x) uses space ≤ O(S(|x|)).
Definition 5.9 One can define a function being in DTIME(T(n)) or
DSPACE(S(n)) similarly.

The program referred to in Definition 7 is deterministic. On input x,
there is only one way for a computation to go. We now define non-
deterministic programs. We consider them mathematical devices. We do
not consider them to be real. However, they will be useful for classifying
problems.

Author's personal copy



Classifying Problems into Complexity Classes 243

Definition 5.10ANondeterministic Program is a programwhere, in any state,
there is a choice of actions to take. For example, a line might read

x := x+ 1 OR y := y+ 4

If M is a nondeterminism program, then what does it mean to run
M(x)? We do not define this. However, we do say what it means for M(x)
to accept.

Definition 5.11 Let M be a nondeterministic program. M(x) accepts if
there is some choice of instructions so that it accepts. M(x) rejects if there is
no choice of instructions that makes it accept.

Definition 5.12 Let T be a monotone increasing function from N to N.
NTIME(T(n)) is the set of all sets A ⊆ �∗ such that there exists a program
M such that
1. If x ∈ A, then M(x) accepts.
2. If x /∈ A, then M(x) rejects.
3. For all x, any computation path of M(x) takes time ≤ O(T(|x|)).

Definition 5.13 Let S be a monotone increasing function from N to
N. NSPACE(S(n)) is the set of all sets A ⊆ �∗ such that there exists a
nondeterministic program M such that
1. If x ∈ A, then M(x) = YES.
2. If x /∈ A, then M(x) = NO.
3. For all x, any computation path of M(x) uses space ≤ O(S(|x|)).

Note 5.14There is no really useful way to define a nondeterministic device
computing a function.

Notation 5.15 The class DTIME(nO(1)) is
⋃∞
i=1 DTIME(ni). We may

use O(1) inside other time or space classes. The meaning will be clear from
context.

We will be interested in seeing which time or space class a problem is
in. Within a class there may be harder and easier problems. There will be
problems that are (informally) the hardest in that class. We do not define
completeness rigorously; however, we state the following property of it;

Fact 5.16 Let X and Y be complexity classes such that X ⊂ Y (proper
containment) If a problem is Y-complete, then Y /∈ X.
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244 William Gasarch

3. RELATIONS BETWEEN CLASSES

Throughout this section think of T(n) and S(n) as increasing.
The following theorem is trivial.

Theorem 5.17 Let T(n) and S(n) be computable functions.
1. DTIME(T(n)) ⊆ NTIME(T(n)).
2. DSPACE(S(n)) ⊆ NSPACE(S(n)).
3. DTIME(T(n)) ⊆ DSPACE(T(n)).
4. NTIME(T(n)) ⊆ NSPACE(T(n)).

The following theorem is easy but not trivial.

Theorem 5.18 Let T(n) and S(n) be computable functions.
1. NTIME(T(n)) ⊆ DTIME(2O(T(n))). ( Just simulate all possible paths.)
2. NTIME(T(n)) ⊆ DSPACE(O(T(n))). ( Just simulate all possible paths—

keep a counter for which path you are simulating.)

The following theorems have somewhat clever proofs.

Theorem 5.19 Let S(n) be a computable functions.
1. NSPACE(S(n)) ⊆ DSPACE(O(S(n)2)). This was proven by Savitch [4]

and is in any textbooks on complexity theory.
2. NSPACE(S(n)) ⊆ DTIME(O(2S(n)). This seems to be folklore.

The following are by diagonalization. Hence, the sets produced are not
natural. Even so, the existence of such sets will allow us to later show natural
sets that are in one complexity class and not in a lower one.

Theorem 5.20 For all T(n), there is a set A ∈ DTIME(T(n) logT(n))) −
DTIME(T(n)). (The T(n) logT(n) comes from some overhead in simulating a
k-tape Turing Machine with a 2-tape Turing Machine.) This is The Time Hierarchy
Theorem and is due to Hartmanis and Stearns [3].

Theorem 5.21 Let S1 and S2 be computable functions. Assume limn→∞ S1(n)
S2(n)

=
∞. Then there exists a set A ∈ DSPACE(S1(n)) − DSPACE(S2(n)). Hence
DSPACE(S2(n)) ⊂ DSPACE(S1(n)). This is The Space Hierarchy Theorem
and seems to be folklore.

4. DSPACE(1)=REGULAR LANGUAGES

There are many different definitions of regular languages that are all
equivalent to each other. We present them in the next definition.
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Definition 5.22 A language A is regular (henceforth REG) if it satisfies any
of the equivalent conditions below.
1. A ∈ DSPACE(1).
2. A ∈ NSPACE(1).
3. A is in DSPACE(1)) by a program that, on every computation path,

only scans the input once. (This is equivalent to being recognized by a
deterministic finite automata, abbreviated DFA.)

4. A is in NSPACE(1) by a program that, on every computation path,
only scans the input once. (This is equivalent to being recognized
by a nondeterministic finite automata, abbreviated NDFA. When you
convert an NDFA to a DFA you may get an exponential blowup in the
number of states.)

5. A is generated by a regular expression (we define this later).

The equivalence of DSPACE(1) and NSPACE(1) is easy. The equiva-
lence of deterministic and nondeterministic is due to Rabin and Scott [5].
It is in all textbooks on formal language theory. The equivalence of
DSPACE(1) and DSPACE(1)-scan once is folklore but has its origins in
the Rabin–Scott paper.

We define regular expressions α and the language they generate L(α).

Definition 5.23 Let � be a finite alphabet.
1. ∅ (the empty set) is a regular expression. L(∅) = ∅.
2. e (the empty string) is a regular expression. L(e) = {e}.
3. For all σ ∈ �, σ is a regular expression. L(σ ) = {σ }.
4. If α and β are regular expressions then:

a. (α ∪ β) is a regular expression. L(α ∪ β) = L(α) ∪ L(β).
b. αβ is a regular expression. L(αβ) = L(α)L(β). (Recall that if A is

a set and B is a set then AB = {xy | x ∈ A AND y ∈ B}.)
c. α∗ is a regular expression. L(α∗) = L(α)∗. (Recall that if A is a set

then A∗ = A0 ∪ A ∪ AA ∪ AAA · · · .
We give examples or regular sets after the next bit of notation.

Definition 5.24 Let � be a finite set. Let w ∈ �∗. Let σ ∈ �. Then
#σ (w) is the number of σ ’s in w.

Definition 5.25 Let x, y, z ∈ N. Then x ≡ y (mod z)means that z divides
x− y.

Example 5.26 The following sets are regular.

{w ∈ {a, b}∗ | #a(w) ≡ #b(w)+ 10 (mod 21)}
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246 William Gasarch

You can replace 10 and 21 with any constants.

{w ∈ {a, b}∗ | abab is a prefix of w}
{w ∈ {a, b}∗ | abab is a suffix of w}

{w ∈ {a, b}∗ | abab is a substring of w}
You can replace abab with any finite string.
If A1,A2 are regular languages, then so are A1 ∩ A2, A1 ∪ A2 and A1.

Hence, any Boolean combination of the above is also a regular language.
For example,

{w ∈ {a, b}∗ |abab is a substring of w AND #a(w) �≡ #b(w)+ 10 (mod 2)1}.

Example 5.27 Throughout this example w = dndn−1 · · · d0 ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ is thought of as a number in base 10.

Is it easy to tell if w ≡ 0 (mod 2)? Yes: w ≡ 0 (mod 2) iff d0 ≡ 0
(mod 2). Hence

{w | w ≡ 0 (mod 2)} is regular.
Is it easy to tell if w ≡ 0 (mod 3)? Yes: w ≡ 0 (mod 3) iff d0 + d1 +

· · · + dn ≡ 0 (mod 3). By keeping a running total mod 3, one can show
that

{w | w ≡ 0 (mod 3)} is regular.
There are also well known divisibility tricks for divisibility by

4,5,6,8,9,10,11. What about 7? There are two questions to ask here
• Is there a trick for divisibility by 7? (This question is not rigorous.)
• Is the set DIV7 = {w | w ≡ 0 (mod 7)} regular?

One can interpret the second question as a rigorous restatement of
the first. When you see the answer you may want to reconsider that
interpretation.

We show that {w | w ≡ 0 (mod 7)} is regular. Note that

100 ≡ 1 (mod 7)
101 ≡ 3 (mod 7)
102 ≡ 2 (mod 7)
103 ≡ 6 (mod 7)
104 ≡ 4 (mod 7)
105 ≡ 5 (mod 7)
106 ≡ 1 (mod 7)
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Hence dndn−1dn−2 · · · d0 is equivalent mod 7 to the following:

d0 + 3d1 + 2d2 + 6d3 + 4d4 + 5d5 +
d6 + 3d7 + 2d8 + 6d9 + 4d10 + 5d11 +
d12 + 3d13 + 2d14 + 6d15 + 4d16 + 5d17 +
... + ... + ... + ... + ... + ... +

We can use this to show that the set DIV7 is regular. To determine
if w ∈ DIV7, when scanning w, one only needs to keep track of (1) the
weighted sum mod 7, and (2) the index mod 6 of i. This would lead to
a 42-state finite automata. Whether you want to consider this a trick for
divisibility by 7 or not is a matter of taste.

Example 5.28 We want to look at sets like

{(b, c,A) | b ∈ A AND c + 1 /∈ A}.
Are such sets regular? We first need to have a way to represent such sets.

We represent a number x by a string of x 0’s and then a 1 and then we do
not care what comes next. So for example 000100 represents 3 and so does
000110. we will denote this by saying that 0001 ∗ ∗ represents 3 (we may
have more ∗’s). We represent finite sets by a bit vector. For example, 11101
represents the set {0, 1, 2, 4}.

How do we represent a triple? We use the alphabet {0, 1}3. We give
an example. The triple (3, 4, {0, 1, 2, 4, 7}) is represented by the following
(The top line and the b, c,A are not there. They are Visual Aids.)

0 1 2 3 4 5 6 7
b 0 0 0 1 0 ∗ ∗ ∗
c 0 0 0 0 1 ∗ ∗ ∗
A 1 1 1 0 1 0 0 1

With this representation the set

{(b, c,A) | b ∈ A AND c + 1 /∈ A}
is regular.

Much more can be said. We define a class of formulas φ(�x, �X), the
WS1S formulas, such that the set of (�a, �A) that make them true is regular.
We will use this again in Section 18.

We will only use the following symbols.
1. The logical symbols ∧, ¬, (∃).
2. Variables x1, x2, x3, . . . that range over N. (We use x, y, z when there are

less than 4 variables.)
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3. Variables X1,X2,X3, . . . that range over finite subsets of N. (We use
X,Y ,Z when there are less than 4 variables.)

4. Symbols: =, <, ∈, S (meaning S(x) = x+ 1).
5. Constants: 0,1,2,3,. . ..
6. Convention: We write x+ c instead of S(S(· · · S(x)) · · · ). Note that +

is not in our lang.
We call this WS1S: Weak Second order Theory of One Successor. Weak
Second order means quantify over finite sets. What Does One Succes-
sor Mean? Our basic objects are numbers. We could view numbers as
strings in unary. In that case S(x) = x1. If our basic objects were
strings in {0, 1}∗, then we could have two successors S0(x) = x0 and
S1(x) = x1.

Definition 5.29 An Atomic Formulas is:
1. For any c ∈ N, x = y+ c is an Atomic Formula.
2. For any c ∈ N, x < y+ c is an Atomic Formula.
3. For any c, d ∈ N, x ≡ y+ c (mod d) is an Atomic Formula.
4. For any c ∈ N, x+ c ∈ X is an Atomic Formula.
5. For any c ∈ N, X = Y + c is an Atomic Formula.

Definition 5.30 AWS1S Formula is:
1. Any atomic formula is a WS1S formula.
2. If φ1, φ2 are WS1S formulas then so are

a. φ1 ∧ φ2,
b. φ1 ∨ φ2
c. ¬φ1

3. If φ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S-Formula then so are
a. (∃xi)[φ(x1, . . . , xn,X1, . . . ,Xm)]
b. (∃Xi)[φ(x1, . . . , xn,X1, . . . ,Xm)]
For any WS1S formula φ(�x, �X), the following set is regular:

{(�a, �A) | φ(�a, �A) is true }.
The proof uses the closure of regular languages under union (for ∨),

intersection (for ∧), complementation (for ¬), and projection (for (∃)).
The closure under projection involves taking an NDFA and converting it
to a DFA. This results in an exponential blowup in the number of states.
Hence, the DFA’s one obtains can be quite large.
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5. L = DSPACE(logn)

For this section, we let L = DSPACE(log n). It is known that
REG ⊂ L. We give examples of sets in L − REG.

Example 5.31 Intuitively, any set where you need to keep track of the
number of a’s or any unbounded quantity is not regular. Formally you would
prove the following nonregular using the pumping lemma (perhaps together
with closure properties). We do not state or use this lemma.

{anbn | n ∈ N}
{anbm | n,m ∈ N AND n ≤ m}

{w | #a(w) = #b(w)}
All of these are in L since you need only keep track of the number of

a’s and b’s which will take O(log n) space.

Example 5.32Consider the following problem. The input is an undirected
graph together with two nodes.

CONN = {(G, s, t) | there is a path in G from s to t }.
CONN is in NSPACE(log n): start with a pointer to s and guess a neigh-

bor x1 to goto. Then guess a neighbor x2 of x1 to goto. Keep doing this.
If you ever get to t, then stop and accept. Is CONN in L? Surprisingly yes.
Omer Reingold [6] proved this in 2008. What if the graph is directed? This
problem is thought to be harder and will be discussed in the next section.

Example 5.33 The following problems are also in L:
1. Given a graph, is it planar? (See [7].)
2. Given two trees are they isomorphic? (See [8].)
3. Given two planar graphs, are they isomorphic? (See [9].)
4. Given n permutations p1, . . . , pn, is their product the identity. (See [10].)

6. NL = NSPACE(logn)

For this section, we let NL = NSPACE(log n). Clearly L ⊆ NL.
It is not known if this inclusion is proper; however, most theorists think
L �= NL.
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Example 5.34 Consider the problem

DCONN = {(G, s, t) | there is a path in G from s to t }.
(The graph G is directed. This is important.)
This problem may look similar to CONN ; however, it is not. Thought

experiment: let A ∈ NSPACE(log n). Let x ∈ �n. View the space that the
program uses while computing on x to be on a tape of length O(log n),
which we call the worktape. Since the worktape is of length O(log n) there
are only a polynomial number of possibilities for it. One can form a directed
graph by taking the vertices to be the possible worktapes, and put an edge
from u to v if it is possible to go (recall that the machine is nondeterministic),
in one step of M , from u to v This directed graph has a path from the
start state to an accept state iff M(x) accepts. Hence, we can reduce any
problem in NSPACE(log n) to the problem DCONN . Formally DCONN
is NL-complete.

If DCONN ∈L then L=NL. Hence, most theorists think
DCONN /∈ L.

7. P = DTIME(nO(1))

Let P = DTIME(nO(1)), also called Polynomial Time. NL ⊆ P by
Theorem 19.2. It is not known if this inclusion is proper; however, most
theorists think NL �= P.

P is considered by theorists to be the very definition of feasible (though
see the next section on randomized polynomial time). Why is polynomial
time so revered?

Polynomial time is usually contrasted with brute force search. Lets say
you want to, given a Boolean formula φ(x1, . . . , xn), determine if there is
some truth assignment that makes it true. The naive approach is to look
at all 2n possibilities. Lets say you could use symmetries to cut it down to
2n−10. You are still doing brute force search, with a few tricks. But if you
got an algorithm in n100 steps then you are most definitely not doing brute
force search. Even though the exponent is large it is likely that the cleverness
used to avoid brute force search can be further exploited to obtain a practical
algorithm.

We present several natural problems in P. Some are expressed as
functions rather than sets as that is more natural for them. They are not
believed to be in NL.
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Example 5.35 If G = (V ,E) is a graph, then U ⊆ U is a vertex cover if
every edge in E has some vertex of U as an endpoint. Let

VC17 = {G | G has a vertex cover of size 17 }.
VC17 ∈ P by the following simple algorithm: look at all subsets of 17

vertices and for each one check if it’s a vertex cover. This take O(n17) time.
Can we do better? We’ll consider this in Section 9.

Example 5.36 Given a weighted graph G = (V ,E) (no negative weights)
and a source node s, find, for each node t, the shortest path from s to t. The
standard algorithm to put this problem in P Dijkstra’s algorithm [11] (it is
in many algorithms textbooks) originally took O(|V |2) time; however, a
later implementation using a Fibonacci heap takes O(|E| + |V | log(|V |).

Example 5.37 Given a weighted graphs G = (V ,E) find, for all
pairs of vertices {s, t} the shortest path between s and t. The Floyd–
Warshall algorithm solves this problem in O(|V |3) time. The algorithm
was discovered independently by Floyd [12], Warshall [13], and Roy [14]
(it is in many algorithms textbooks).

Example 5.38 Given a weighted graph G = (V ,E) find a min weight
spanning tree. There are basically two algorithms for this, one due to
J. Kruskal [15] and one due to Prim [16] (both are in many algorithms
textbooks). Kruskal’s algorithm originally took O(E logV ) steps. Prim’s
algorithm originally took O(|V |2); however, a later implementation using
a Fibonacci heap and adjacency lists takes O(|E| + |V | log |V |). The best
known algorithm for this problem is due to Chazelle [17] and runs in time
O(nα(m, n)) where α(m, n) is the inverse of the Ackermann function (see
Section 19). Note that this is very close to linear. If this was also a lower
bound, then the result would be optimal and Ackermann’s function would
have popped up in a natural place. Alas, Chazelle thinks this is unlikely.

Example 5.39 Linear programming: Given a matrix A and a two vectors b
and c find the vector of x that maximizes c ·x while satisfying the constraint
Ax ≤ b.

Linear programming is particularly interesting. This problem is
extremely practical. The Simplex Method, developed by Dantzig in 1947,
solves it quickly in most cases but is not polynomial time. It is widely
used. In 1979, Khachiyan [18] showed it was in polynomial time using
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the ellipsoid method. This algorithm was important theoretically in that
the problem was now in P; however, it was slow in practice. In 1984,
Karmarkar [19] produced a method that is fast in both theory and practice.

8. RANDOMIZED POLYNOMIAL TIME: R

Definition 5.40 A problemA is in Randomized Polynomial Time (hence-
forth R) if there is a program that flips coins such that the following
happens:
1. On all inputs of length n, the program halts in time polynomial in n.
2. If x ∈ A, then the program will ACCEPT with probability ≥ 2/3.
3. If x /∈ A, then the program will REJECT.

Note 5.41 The 2/3 can be replaced by any ε > 0 and even by 1
2n where n

is the length of the input.

Clearly P ⊆ R. Before 1988, the theory community did not have a
strong opinion on if P = R, however, the opinion would have been a
tendency towards P �= R. Michael Sipser [20] was an exception in that
he believed P = R. In 1988, Nisan and Wigderson [21] showed that,
given certain quite reasonable unproven hypothesis from complexity theory,
P = R. Since then the consensus has been that P = R. This remains
unproven.

At one time the quintessential natural problem in R that was not known
to be in P was primality. Solovay and Strassen [22] and Rabin [23] showed
primality was in R. Their algorithms are practical and used. Rabin has
pointed out that if the error is (say) 1/2100 then that is less than the
probability that a cosmic ray will hit a computer and flip a bit to make
it incorrect. The algorithm by Rabin is sometimes called the Miller–
Rabin primality test since Miller had a similar deterministic algorithm that
depended on unproven conjectures in Number Theory.

In 2002, Agrawal–Kayal–Saxena [24] proven that primality is in P. Their
algorithm is slow and not in use. However, it was very interesting to see that
primality really is in P.

There is still one natural problem that is in R that is not yet known to
be in P:

Example 5.42 Given a polynomial q(x1, . . . , xn) and a prime p, is the
polynomial identically 0 over mod p?
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Here is the randomized algorithm: Pick a random b1, . . . , bn ∈
{0, . . . , p − 1}. Evaluate q(b1, . . . , bn) (mod p). If it is not zero, then we
KNOW that q(x1, . . . , xn) is not identically zero. If it is zero, then we are
not sure. So we plug in another random b1, . . . , bn. Do this n times. If you
ever get a nonzero value, then you know q(x1, . . . , xn) is not identically
zero. If you always get a zero, then you know with high probability that
q(x1, . . . , xn) is identically zero.

The following randomized class has also been defined; however, there
are no natural problems in it that are not also in R.

Definition 5.43 A problem A is in Bounded Probabilistic Polynomial Time
(henceforth BPP) if there is a program that flips coins such that the following
happens:
1. On all inputs of length n, the program halts in time polynomial in n.
2. If x ∈ A, then the program will ACCEPT with probability ≥ 2/3.
3. If x ∈ A, then the program will REJECTS with probability ≥ 2/3.

Note 5.44 The 2/3 can be replaced by any ε > 0 and even by 1
2n where n

is the length of the input.

Clearly R ⊆ BPP. All that was written above about “P = R?” applies
to “P = BPP?”. In particular, theorists currently think P = BPP but this
remains unproven.We will have a bit more to say about BPP in Section 10.

9. NP = NTIME(nO(1))

Let NP = NTIME(nO(1)), also called Nondeterministic Polynomial
Time. Clearly P ⊆ R ⊆ NP. It is not known if these inclusions are proper;
however, most theorists think P = R ⊂ NP. We will discuss their thoughts
on P versus NP in more depth later.

What about BPP? It is now known if BPP ⊆ NP. Since most theorists
think P = BPP and P �= NP, most theorists think BPP ⊂ NP. But it’s not
even known that BPP ⊆ NP. In Section 10, we will state an upper bound
for BPP.

NP is the most important class in computer science. It contains natural
problems that we want to solve but currently seem hard to solve. Alas, there
are reasons to think they will always be hard to solve. But there are ways
around that. Maybe.

We give two equivalent definitions of NP.
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Definition 5.45 Let A be a set.
1. A ∈ NP if A ∈ NTIME(nO(1)).
2. A ∈ NP if there exists a polynomial p and a set B ∈ P such that

A = {x | (∃y)[|x| = p(|x|) AND (x, y) ∈ B]}.
The intuition here is that y is a short easily verifiable proof that x ∈ A.
We often call y the witness.

Note that if A ∈ NP then it is quite possible that A /∈ NP. We know
so little about NP that we have no examples; however, most theorists think
that NP is not closed under complementation. Hence, we need a name for
the complement of NP.

Definition 5.46 A set A is in co-NP if A is in NP.

Most theorists think NP �= co-NP.

Example 5.47 A Boolean Formula φ(�x) is satisfiable if there exists �b such
that φ(�b) = TRUE. Let SAT be the set of all satisfiable formulas. SAT ∈
NP. The intuition is that the satisfying assignment �b is the witness for φ ∈
SAT . Formally p(φ(x1, . . . , xn)) = n and

B = {(φ, �b) | φ(�b) = TRUE}.
Note that while finding the assignment �b such that φ(�b) = TRUE may

be hard, verifying that φ(�b) = TRUE is easy. The easy verification is not
good news for SAT , this is not a first step to showing that SAT is easy or
in P. But it does indicate why this problem may be hard: finding the right
�b is hard.

You might think that SAT requires a long time to solve since you seem
to need to go through all 2n possible assignments. And this may be true. But
we do not know it to be true. What haunts many complexity theorists is
that someone will be find a very clever way to avoid the brute force search.
What comforts many complexity theorists is that SAT is NP-complete.
Hence, it is unlikely to be in P.

Example 5.48 A graph G is Eulerian if there is a path that hits every edge
at exactly once. Let EULER be the set of all Eulerian graphs. EULER ∈
NP. The cycle that hits every edge at least once is the witness that G is
Eulerian.

You might think that EULER requires a long time to solve since you
seem to need to go through all possible cycles. And this may be true. But
we do not know it to be true. What haunts many complexity theorists is
that someone will be find a very clever way to avoid the brute force search.
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The last paragraph is a joke. EULER can be solved quickly! It turns
out that a graph is in EULER iff every vertex has even degree. Hence,
EULER ∈ P. Euler, who was quite clever, figured this out in 1736. (though
he did not use the terminology of polynomial time). This is just the kind of
thing I warned about when talking about SAT. There could just some clever
idea out there we haven’t thought of yet!

Example 5.49 A graph G is Hamiltonian if there is a path that hits every
vertex exactly once. LetHAM be the set of all Hamiltonian graphs.HAM ∈
NP. The cycle that hits every vertex at least once is the witness that G is
Hamiltonian.

You might think that HAM requires a long time to solve since you
seem to need to go through all possible cycles. You may also be thinking,
given that I fooled you with EULER, that you and The Who don’t get fooled
again[25]. However this time, for better or worse, HAM does really seem
unlikely to be in P. In particular,HAM is NP-complete and hence unlikely
to be in P.

Example 5.50 If G = (V ,E) is a graph, then U ⊆ U is a vertex cover if
every edge in E has some vertex of U as an endpoint. Let

VC = {(G, k) | G has a vertex cover of size k }.
VC ∈ NP. The vertex cover itself is the witness. VC is NP-complete

and hence unlikely to be in P.

Example 5.51 The Set Cover Problem) is as follows: Given S1, . . . , Sm ⊆
{1, . . . , n} and a number L, is there a set I ⊆ {1, . . . ,m} of size L such that⋃
i∈I Si =

⋃n
i=1 Si.

The L subsets together is the witness. Set Cover is NP-complete and
hence unlikely to be in P.

SAT , HAM , VC, SC are all NP-complete. So are thousands of natural
problems from many different fields. Actually this means that They are all
the same problem! Are these problems not in P? Does P = NP? This is still
not known.

9.1 Reasons to Think P �= NP and some Intelligent Objections
Scott Aaronson [26] gives very good reasons to think that P �= NP.
William Gasarch [27] gives a simplified version of Scott’s reasons. Richard
Lipton [28] gives some intelligent objections. We summarize some of their
thoughts, and others, below.
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(1) For P �= NP
Many of the problems that are NP-complete have been worked on for

many years, even before these terms were formally defined. Mathematicians
knew that graphs had an Euler cycle iff every vertex had even degree and
were looking for a similar characterization for HAM graphs. If P = NP,
then we would have found the algorithm by now.

(2) For P = NP
We keep getting better and better algorithms in surprising ways. We

give an example. Recall from Section 7:

V17 = {G | G has a vertex cover of size 17 }.
As noted in Section 7 VC17, can be solved in time O(n17). It would

seem that one cannot do better. AH- but one can! We give two ways to do
better to illustrate how surprising algorithms are.

Using the Graph Minor Theorem Robertson and Seymore proved The Graph
Minor Theorem in a series of 25 papers titled Graph Minors I, Graph Minors
II, etc. Suffice it to say that this theorem is difficult. We do not state the
theorem; however, we state a definition and a corollary.

Definition 5.52 If G is a graph, then H is a minor of G if one can obtain
H by performing the following operations on G in some order (1) remove
a vertex and all the adjacent nodes, (2) remove an edge, (3) contract an
edge—that is, remove it but then merge the two endpoints into one vertex.

Definition 5.53 Let G be a set of graphs. G is closed under minors if, for all
G ∈ G if H is a minor of G then H ∈ G. Examples: (1) planar graphs, (2)
graphs that can be drawn in the plane with at most 100 crossings, (3) V17.

Definition 5.54 Let G be a set of graphs. G has a finite obstruction set (FOS)
if there exists a finite set of graphsH1,H2, . . . ,Hm such thatG ∈ G iff none
of the Hi are a minor of G. Intuitively, if G /∈ G then there must be a solid
reason for it. It was known (before the Graph Minor Theorem) that the set
of planar graphs has FOS {K5,K3,3}.

Fact 5.55 Fix H. There is an O(n3) algorithm to tell if H is a minor of G. (This
was also proven by Robertson and Seymour).

We now state the important corollary of the Graph Minor Theorem:
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Corollary 5.56 If G is a set of graphs that is closed under minors, then it has a
finite obstruction set. Using the fact above, any set of graphs closed under minors is
in time O(n3).

In particular, VC17 is in DTIME(n3). Note that we got a problem
into better-time-bound-than-we-thought class using an incredibly hard
theorem in math. Could the same happen with SAT?

Before the Graph Minor Theorem, most algorithms were very clever
but didn’t use that much math and certainly not that much hard math
(algorithms in number theory may be an exception). Hence, it was plausible
to say if P = NP then we would have found the algorithm by now. After the
Graph Minor Theorem this was a hollow argument. It has been said:

The class P lost its innocence with the Graph Minor Theorem.
We note that the algorithm given above is insane. The constant is

ginormous and the algorithm itself is nonconstructive. It can be made
constructive but only be making the constant even bigger.

Using Bounded Tree Search There is a clever way to solve VC17 in a bound
far better than O(n17) that does not use hard math. We form a binary tree.
At the root put, the graph and the empty set take an edge (a, b) of G. One
of {a, b} must be in the vertex cover. Make the left subchild of the root the
graph without a and the set {a}. Make the right subchild of the root the
graph without b and the set {b}. Repeat this process. Every node will have
a graph and a set. Do this for 17 levels. If any of them lead to the empty
graph, then you are done and the set is the vertex cover of size ≤ 17. This
takes O(n) but note the constant is roughly 217.

This algorithm is clever but was not known for a long time. I would like
to tell you that the Graph Minor Theorem algorithm came first, and once
it was known to be in far less than O(n17) people were inspired and thus
found the clever algorithm. However, the actually history is murkier than
that. Oh well.

The best known algorithm for VCk is due to Chen, Kanj, and Jia [29]
and runs in time O(1.2738k + kn).

(3) For P �= NP
Let us step back and ponder how one makes conjectures that are

reasonable.
Do Popperian experiments. Karl Popper [30] proposed that scientists should
set up experiments that could disprove their theories. That is, experiments
that can actually fail. Their failure to fail gives you more evidence in your
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conjecture. I do not know how one can do this for P versus NP. This would
be an interesting approach to P versus NP; however, it is not clear how you
would set up such experiments.
Paradigms. Thomas Kuhn [31] proposed that scientists operate within a
paradigm and try to fit everything into that paradigm. Great science happens
when you have enough evidence for the paradigm to shift. However, most
of the time the paradigm is fine. If a theory fits well into a paradigm, that
cannot be ignored. (I do realize that if you take this too seriously you may
end up with group-think). With regard to P versus NP we do know what
theorists believe in a more precise way than usual. There have been two
polls taken. In 2002, around 60% of all theorists believed P �= NP [32] and
in 2012 around 80% of all theorists believed P �= NP [33]. Whether or not
you see that as evidence is a matter of taste. We will mention this poll later
in Section 9.2.
Explanatory power. If a theory explains much data, then perhaps the theory is
true. This is how evolution is verified. It would be hard to do experiments;
however, given Fossil and DNA evidence, evolution seems to explain it
pretty well. (I know that it’s not as simple as that.) Are there a set of random
facts that P �= NP would help explain? Yes.

The obvious one: P �= NP explains why we have not been able to solve
all of those NP-complete problems any faster!

More recent results add to this:
1. Chvatal [34] in 1979 showed that there is an algorithm for Set Cover

that returns a cover of size (ln n) × OPT where OPT is the best one
could do.

2. Moshkovitz [35] in 2011 proved that, assuming P �= NP, this approxi-
mation cannot be improved.

Why can’t we do better than ln n? Perhaps because P �= NP. If this was the
only example it would not be compelling. But there are many such pairs
where assuming P �= NP would explain why we have approached these
limits.

(4) For P = NP:
Fool me once, shame on you, fool me twice, shame on me. There have been

surprises in mathematics and computer science before. And there will
be more in the future. We mention one: NSPACE(S(n)) closed under
complementation. While this is not really an argument for P = NP it is
an argument for keeping an open mind.
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An intriguing Question: Most people in the theory community think
(a) P �= NP, (b) we are very far from being able to prove this. (c) If
P = NP, then this might be by an algorithm we can figure out today. I
offer the following thought experiment and my answer. You are told that
P versus NP has been solved but you are not told in what direction! Do you
believe:
• Surely P �= NP has been shown since of course P �= NP.
• Surely P = NP has been shown since we are nowhere near being able

to show anything remotely like P �= NP. (See Section 9.4 for more on
this.)
Personally I would think P = NP was shown.

9.2 NP Intermediary Problems
Are there any natural problems in NP−P that are not NP-complete? Such
sets are called intermediary. If we knew such sets existed, then we would have
P �= NP. Are there any candidates for intermediary sets?

Ladner [36] showed in 1975 that if P �= NP then there is an intermediary
set. While this is good to know, the set is not natural.

We now give natural problems that may be intermediary.

Example 5.57 Factoring Consider the set

FACT = {(n,m) | (∃a ≤ m)[m divides n]}.
1. FACT is clearly in NP. There is no known polynomial time algorithm

for FACT . There is no proof that FACT is NP-complete. If FACT is
in P, then this could probably be used to crack many crypto systems,
notably RSA. Hence, the lack of a polytime algorithm is not from lack
of trying.

2. Using the unique factorization theorem one can show that FACT is in
co-NP. Hence, if FACT is NP-complete then NP = co-NP. Hence,
most theorists think FACT is not NP-complete.

3. The best known algorithm for factoring n is the Number Field
Sieve due to Pollard (see [37] for the history) and runs in time
O(exp(c(log n)1/3(log log n)2/3)) where c = (329 )

1/3 = 1.922999 . . ..
Note that the length of the input is log n so this algorithm runs in
time roughly 2O(L

1/3) where L is the length of the input. This is still
exponential but still better than 2O(L).

4. Peter Shor [38] proved that FACT is in Quantum-P. Some people think
this is evidence that FACT is easier than we thought, perhaps in P.
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Others think that its evidence that quantum computers can do things
that are not in P.

5. In the poll [33] about P versus NP, respondents were also asked to
comment on other problems. Of the 21 who commented on factoring
8 thought it is in P and 13 thought it is not in P.

6. Gary Miller and others have said: Number theorists think factoring is in P,
whereas cryptographers hope factoring is not in P.

Example 5.58 The Discrete Log Problem Let p be a prime. Let g be
such that, calculating mod p,

{ g0, g1, g2, . . . , gp−2} = {1, 2, 3, . . . , p− 1}
(This is a set inequality. We are not saying that g0 = 1, g1 = 2, etc.)

Given a number x ∈ {1, . . . , p−1} we want to know the unique z such
that gz ≡ x (mod p). Note that p, g, x are given in binary so their lengths
are bounded by log2 p. Hence, we want to find z in time poly in log2 p.

Consider the set

DL = {(p, g, x, y) | (∃z ≤ y)[gz ≡ x (mod p)]}.
1. DL is in NP. (There is one non-obvious part of this: verifying that g

is a generator.) There is no known polynomial time algorithm for DL.
There is no proof thatDL is NP-complete. IfDL is in P, then this could
probably be used to crack many crypto systems, notably Diffie–Helman.
Hence, the lack of a polytime algorithm is not from lack of trying.

2. DL is in co-NP. Hence, if DL is NP-complete then NP = co-NP
which is unlikely. Hence, most theorists think DL is not NP-complete.

3. There are several algorithms for finding the discrete log that take time
O(

√
p). See the Wikipedia Entry on Discrete Log for a good overview.

4. Peter Shor [38] proved that DL is in Quantum-P.
5. I have not heard much talk about this problem. In particular, nobody

commented on it for the poll.

Note 5.59 (This note is purely speculative. I am invoking the definition
of an intellectual: One who is an expert in one area and pontificates in another.)
Since factoring and discrete log are important for national security I used to
say things like factoring is not known to be in Polynomial time, or maybe that’s just
what the NSA wants us to think!. However, one thing I glean from reading
about the Snowden leaks is that the NSA seems more interested in bugging
your computer before you encrypt a message, and convincing you to use
keys that aren’t long enough to be secure, than it is in hard number theory.
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The sociology of research in crypto has changed enormously in the last
50 years. At one time only the NSA worked on it, so they could be way
ahead of academia and the private sector. Now many academics, private
labs, and businesses work on it. Hence, the NSA cannot be too far ahead.
They can read the papers that academics write so they can keep pace. But
they cannot talk to people outside of NSA (and perhaps not even to people
inside NSA) about what they do, which may be a hindrance.

Hence, I no longer say anything hinting that the NSA may have solved
these problems. Nor do I think they have a quantum computer in their
basement.

Note again that this is all speculative.

Example 5.60 Graph Isomorphism

GI = {(G1,G2) | G1 and G2 are isomorphic }.
1. GI is clearly in NP. There is no known polynomial time algorithm for

it. There is no proof that it is NP-complete.
2. Even though it has no immediate application there has been much work

on it. The following special cases are known to be in P: (1) if there
is a bound on the degree, (2) if there is a bound on the genus, (3) if
there is a bound on the multiplicity of the eigenvalues for the matrix
that represents the graph. There have been connections to group theory
as well.

3. The best known algorithm is due to Luks [39] and runs in time
2O(

√
n log n).

4. IfGI is NP-complete, then�p
3 = 	

p
3 (see Section 10 for the definition).

Hence, most theorists think GI is not NP-complete.
5. In the poll [33] about P versus NP, respondents were also asked to

comment on other problems. Of the 21 who commented on Graph
Isomorphism (they were not the same 21 who commented on factoring)
14 thought it was in P and 8 thought it was not in P.

6. I give my opinion: Someone will prove P �= NP between 200 and 400
years from now; however, we will still not know if GI is in P. I pick this
opinion not because it’s the most likely but because its the most bizarre.

Example 5.61 Group isomorphism You are given representations of
elements g1, . . . , gn and h1, . . . , hn you are also given two n× n tables, one
that tells you, for all i, j what gi ∗ gj is and one that tells you, for all i, j,
what hi ∗ hj is. First check if both tables are for groups (there is an identity
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element, every element has an inverse, and ∗ is associative). This can be
done in polynomial time. The real question is then: Are the two groups
isomorphic? We call this problem GPI .
1. GPI is clearly in NP. There is no known polynomial time algorithm for

it. There is no proof that it is NP-complete.
2. A long time ago Lipton, Tarjan, and Zalcstein observed that this problem

is in time nlog2 n+O(1) (they never published it but see [40]). Hence,
if GPI is NP-complete then everything in NP would be in time
nO(log n). This seems unlikely though not as devastating as P = NP.
Rosenbaum [41] in 2013 obtained a better algorithm for GPI that runs
in time n0.5 log2 n+O(1). This was rather difficult. Lipton is quite impressed
with it (see the citation above).

Example 5.62 Grid Coloring Imagine coloring every point in the 5× 5
grid (formally all points (i, j) where 1 ≤ i, j ≤ 5). A monochromatic rectangle
(henceforth mono-rect) are four points that form a rectangle (e.g., (2, 2),
(2, 5), (4, 2), (4, 5)) that are all the same color. The following is known [42]:
For all c, there exists n such that for all c-colorings of the n × n grid there
exists a mono-rect. How big does n have to be? We call a grid c-colorable
if you can color it with c colors and not get any mono-rects.

Consider the following set

GRID = {(n, c) | The n× n grid is c-colorable }.
This set seems to be in NP. But it is not. The input (n, c) is of size

log n+ log c since they are written in binary. The witness is a c-coloring of
n× n which is of size roughly cn2. This witness is of size exponential in the
input size.

We get around this problem by writing n, c in unary.

GRIDUNARY = {(1n, 1c) | The n× n grid is c-colorable }.
This problem is in NP. Is it NP-complete? This is unlikely since the set

is sparse (see definition below).

Definition 5.63 A set S ⊆ �∗ is sparse if there exists a polynomial p such
that (∀n)[|S ∩�n| ≤ p(n)]. Note that this is a good notion of a skinny set
since S ∩�n could be as large as 2n.

Mahaney in 1982 [43] proved that if a sparse set was NP-complete then
P = NP. Hence, it is unlikely that GRIDUNARY is NP-complete. Even
so, GRIDUNARY is believed to be hard.
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Consider the following nonsparse variant of the problem: GRIDEXT
is the set of all (1n, 1c, ρ) such that
• ρ is a partial c-coloring of the n× n grid.
• ρ can be extended to a c-coloring of the entire grid.

GRIDEXT was shown to be NP-complete by Apon, Gasarch, and
Lawler [44].

GRIDUNARY and GRIDEXT are examples of problems in Ramsey
theory. Most of them have this same property: they seem to be hard,
the natural version is sparse (hence unlikely to be NP-complete), but the
version where you have a partial coloring is NP-complete.

9.3 HaveWeMade Any Progress on P Versus NP?
No.

9.4 Seriously, Can you give a more enlightening answer
to HaveWeMade Any Progress on P VersusNP?

1. There have been strong (sometimes matching) lower bounds on very
weak models of computation. Yao [45] showed (and later Hastad [46,47]
simplified and explained) that PARITY of n bits cannot be computed
with an AND–OR–NOT circuit that has a polynomial number of gates
and constant depth. Smolensky [48] extended this (with an entirely
different proof) to include Mod m gates where m is a power of an odd
prime [48].

2. Let ACC be the class of functions that can be computed with a
polynomial number of gates and constant depth where we allow AND,
OR, NOT and MOD m gates (they return 0 if the sum of the inputs
is ≡ 0 (mod m) and 1 otherwise). In 2014, Williams [49] showed
that ACC does not contain NTIME(2n

O(1)
). This was an impressive

achievement. This makes one pause to think how much we have to
do to get P �= NP.

3. There have been some weak lower bounds on space-bounded models
of computation. Ryan Williams [50,51], proved that (essentially) if your
machine has very little space to work with then SAT requires n1.8019377...

where the exponent approaches 2 cos(2π/7) as the space goes down.
Buss and Williams [52] later proved that the techniques used could not
yield a better lower bound.

4. There are proofs that certain techniques will not suffice. These include
techniques from computability theory [53], current methods with
circuits [54], and a hybrid of the two [55].
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5. Ketan Mulmuley has devised a research program called Geometric Com-
plexity Theory which, to it credit, recognizes the obstacles to proving
P �= NP and seems to have the potential to get around them. Ketan
himself says the program will take a long time- not within his lifetime.
For an overview, see [56] and other papers on his website.

9.5 So You Think You’ve Settled P versus NP
The following is Lance Fortnow’s blog post from January 14, 2009, see
blog.computationalcomplexity.org/2009/01/so-you-think-you-settled-
p-vs-np.html

which is titled
So You Think You’ve Settled P versus NP

1. You are wrong. Figure it out. Sometimes you can still salvage some-
thing interesting out of your flawed proof.

2. You believe your proof is correct. Your belief is incorrect. Go back to
step 1.

3. Are you making any assumptions or shortcuts, even seemingly small
and obvious ones? Are you using words like “clearly,” “obviously,”
“easy to see,” “should,” “must,” or “probably”? You are claiming to
settle perhaps the more important question in all of mathematics. You
don’t get to make assumptions. Go back to step 1.

4. Do you really understand the P versus NP problem? To show P �= NP,
you need to find a language L in NP such that for every k and every
machineM running in time nk (n = input length),M fails to properly
compute L. L is a set of strings. Nothing else. L cannot depend on M
or k. M can be any program that processes strings of bits. M may act
differently than one would expect from the way you defined L. Go
back to step 1.

5. You submit your paper to an on-line archive. Maybe some people tell
you what is missing or wrong in your paper. This should cause you to
step 1. But instead you make a few meaningless changes to your paper
and repost.

6. Eventually people ignore your paper. You wonder why you aren’t
getting fame and fortune.

7. You submit your paper to a journal.
8. The paper is rejected. If you are smart you would go back to step 1.

But if you were smart you would never have gotten to step 7.
9. You complain to the editor that either the editor doesn’t understand

the proof of that it is easily fixed. You are shocked a respectable editor
would treat your paper this way.
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10. You are convinced “the establishment” is purposely suppressing your
paper because our field would get far less interesting if we settle P versus
NP so we have to keep it open at all costs.

11. If I tell you otherwise would you believe me?

9.6 Eight Signs a Claimed P �= NP Proof is Wrong
In 2010, Vinay Deolalikar claimed to have a proof that P �= NP. After much
discussion, some of it in blogs, the proof is now thought to be incorrect and
not even close to a real proof. This inspired Scott Aaronson to post a blog on

Eight Signs a Claimed P �= NP Proof is Wrong
which can be found here: www.scottaaronson.com/blog/?p=458
Below are the eight signs, followed by some comments from me on the

signs. Note that they are written in Scott’s voice. So if it reads every attempt
I’ve ever seen . . . it means every attempt Scott has ever seen.
1. The author can’t immediately explain why the proof fails for 2SAT,

XOR-SAT, or other slight variants of NP-complete problems that are
known to be in P. Historically, this has probably been the single most
important “sanity check” for claimed proofs that P �= NP: in fact, I’m
pretty sure that every attempt I’ve ever seen has been refuted by it.

2. The proof doesn’t “know bout” all known techniques for polynomial
time algorithms, including dynamic programming, linear and semidefi-
nite programming, and holographic algorithms. This is related to sign 1,
but is much more stringent. Mulmuley’s GCT (Geometric Complexity
Theory) program is the only approach to P versus NP I’ve seen that even
has serious aspirations to “know about” lots of nontrivial techniques
for solving problems in P (at the least, matching and linear program-
ming). For me, that’s probably the single strongest argument in GCT’s
favor.

3. The paper doesn’t prove any weaker results along the way: for example
P �= PSPACE, NEXP �⊆ P/poly, NP �⊆ TC0, permanent not equivalent
to determinant by linear projection, SAT requires superlinear time. . ..
P versus NP is a staggeringly hard problem, which one should think of
as being dozens of steps beyond anything that we know how to prove today.
So then the question arises: forget steps 30 and 40, what about steps 1,2,
and 3?

4. Related to the previous sign, the proof doesn’t encompass the known lower bound
results as special cases. For example: where, inside the proof, are the known lower
bounds against constant-depth circuits? where’s Razborov’s lower bound against
monotone circuits? Where’s Raz’s lower bound against multilinear formulas? All
these things (at least the uniform version of them) are implied by P �= NP,
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so any proof of P �= NP should imply them as well. Can we see more-or-less
explicitly why it does so?

5. The paper lacks the traditional lemma–theorem–proof structure. This sign was
pointed out (in the context of Deolalikar’s paper) by Impagliazzo. Say what you
like about the lemma–theorem–proof structures, there are excellent reasons why
it’s used—amount them that, exactly like modular programming, it enormously
speeds up the process of finding buts.

6. The paper lacks a coherent overview, clearly explaining how and why it overcomes
the barriers that foiled previous attempts. Unlike most P �= NP papers,
Deolalikar’s does have an informal overview (and he recently released a separate
synopsis. But reading the overview felt like reading Joseph Conrad’sHeart
of Darkness: I’ve reread the same paragraph over and over because the
words would evaporate before they could stick to my brain. Of course,
maybe that just means I was too dense to understand the argument,
but the fact that I couldn’t form a mental image of how the proof was
supposed to work wasn’t a promising sign.

7. The proof hinges on subtle issues in descriptive complexity. Before you
reach for your axes: descriptive complexity is a beautiful part of TCS,
full of juicy results and open problems, and I hope that someday it
might even prove useful for attacking the great separation questions.
Experience has shown, however, that descriptive complexity is also a
powerful tool for fooling yourself into thinking you’ve proven things
you haven’t. The reason for this seems to be that subtle differences in
encoding schemes—for example whether you do or don’t have an order
relation—can correspond to huge differences complexity. As soon as I
saw how heavily Deolalikar’s proof relied on descriptive complexity, I
guessed that he probably made a mistake i applying the results from that
field that characterize complexity classes like P in terms of first-order
logic. I’m almost embarrassed to relate this guess, given how little actual
understanding went into it. Intellectual honesty does, however, compel
me to point out that it was correct.

8. Already in the first draft the author waxes philosophically about meaning
of his accomplishments, profusely thanks those who made it possible,
etc. He says things like “confirmations have already started coming ink.”
To me, this sort of overconfidence suggests a would-be P �= NP prover
who hasn’t grasped the sheer number of mangled skeletons and severed
heads that line his path.
I agree with all of Scott’s signs. Sign 1 I have used to debunk a paper that

claimed to show that P �= NP. The paper claimed to show that the HAM
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is not in P; however, the techniques would also show that EULER is not
in P. Since EULER actually IS in P, the proof could not be correct. Not
that I thought it had any chance of being correct anyway. Lance Fortnow
has an easier sign: any proof that claims to resolve P versus NP is just
wrong.

Scott uses the male pronoun He. This could be because there is no
genderless pronoun in English; however, I also note that I have never known
a female to claim to have a proof of P �= NP. Perhaps they know better.

9.7 How to Deal with Proofs that P = NP
Alleged proofs that P = NP are usually code or an algorithm that the author
claims works most of the time. If its a program for SAT, then the following
class of formulas will likely take it a long time and thus disprove the authors
claim.

First some preparation. The following seems obvious and indeed is
obvious: If you try to put n + 1 items into n boxes, then one of the boxes
will have 2 items. It is often referred to as the Pigeon Hole Principle for n, or
PHPn.

We write the negation of PHPn as a Boolean formula. The items are
{1, 2, . . . , n + 1}. The boxes are {1, 2, . . . , n}. The Boolean variable xij is
TRUE if we put it item i into box j. Consider the formula that is the AND
of the following:
1. For each 1 ≤ i ≤ n+ 1 xi1 ∨ xi2 ∨ · · · ∨ xin. This says that each item is

in some box.
2. For each 1 ≤ i1 < i2 ≤ n + 1 and 1 ≤ j ≤ n ¬(xi1j ∧ xi2j). This says

that no box has two items.
The Boolean formula ¬PNPn is not satisfiable. How would one show that?
One way is to list out the truth table. This is of course quite long. It is know
that in some logical systems this is the best you can do. While these systems
are weak, it is likely that the P = NP guy is essentially using one of those
systems. So challenge him to run his system on say PHP20. That will shut
him up and get him out of your hair.

9.8 A Third Category
I have also gotten papers that claim to resolve P versus NP but from what
they write you cannot tell in what direction. Some hint that its the wrong
problem or that its model dependent or that its independent of Set Theory;
however, even ascribing those aspirations is being generous in that such
papers are usually incoherent.
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10. PH: THE POLYNOMIAL HIERARCHY

We want to generalize the definition of NP. We first need a better
notation.

Definition 5.64 If x is understood, then (∃py)[B(x, y)] means that there
exists a polynomial p such that (∃y AND B(x, y) AND |y| = p(|x|).

With this notation we define NP again.

Definition 5.65 A ∈ NP if there exists a set B ∈ P such that

A = {x | (∃py)[(x, y) ∈ B]}.
Why stop with one quantifier?

Definition 5.66
1. A ∈ �p

1 if there exists a set B ∈ P such that

A = {x | (∃py)[(x, y) ∈ B]}.
This is just NP.

2. A ∈ 	p
1 if A ∈ �p

1 . This is just co-NP.
3. A ∈ �p

2 if there exists a set B ∈ P such that

A = {x | (∃py)(∀pz)[(x, y, z) ∈ B]}.
4. A ∈ 	p

2 if A ∈ �p
2 .

5. A ∈ �p
3 if there exists a set B ∈ P such that

A = {x | (∃py)(∀pz)(∀w)[(x, y, z,w) ∈ B]}.
6. A ∈ 	p

3 if A ∈ �p
3 .

7. One can define �p
4 ,	

p
4,�

p
5 ,	

p
5, . . ..

8. These sets form what is called the Polynomial Hierarchy. We define PH =⋃∞
i=1�

p
i = ⋃∞

i=1	
p
i .

Clearly

�
p
1 ⊆ �

p
2 ⊆ �

p
3 · · ·

and

	
p
1 ⊆ 	

p
2 ⊆ 	

p
3 · · · .

and

(∀i)[	p
i ⊆ �

p
i+1 and �

p
i ⊆ 	

p
i+1].
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These containments are not known to be proper. If there is an i such
that �p

i = 	
p
i , then (∀j ≥ i)[�p

j = �
p
i ]. In this case, we say PH collapses.

Most theorists think that PH does not collapse.
Clearly NP ⊆ PH and R ⊆ PH.What about BPP? Since most theorists

think P = R = BPP, most theorists think BPP ⊆ PH. But is it not even
clear that BPP ⊆ PH. However, Sipser [57] obtained BPP ⊆ �

p
2 ∩	p

2 by
developing a new theory of time-bounded Kolmogorov complexity, and
shortly thereafter, Lautemann [58] proved the same containment with a
very clever trick. One might thinkOh, so a problem can be open for a long time
and then all of a sudden it’s solved. Maybe P versusNP will go that way.However,
I am skeptical of this notion. For clever algorithms and clever collapses of
classes that has happened, but never for a separation of classes.

The following are examples of natural problems that are in these various
levels of PH.

Example 5.67 This will just be a rewriting of the SAT problem. QBF
stands for Quantified Boolean Formula. φ(�x) will be a Boolean Formula.

QBF1 = {φ(�x) | (∃�b)[φ(�b) = TRUE]}.
QBF1 is �p

1-complete and hence unlikely to be in 	p
1. This is just a

fancy way of saying that SAT is NP-complete and hence unlikely to be in
co-NP.

Example 5.68 φ(�x, �y) means there are two sets of variables that are
distinguished.

QBF2 = {φ(�x, �y) | (∃�b)(∀�c)[φ(�b,�c) = TRUE]}.
QBF2 is �

p
2-complete and hence unlikely to be in 	p

2.

Example 5.69 One can define QBFi. QBFi is �
p
i -complete and hence

unlikely to be in 	p
i .

Example 5.70 Boolean Formula Minimization. Given a Boolean Formula
φ, is there a shorter equivalent Boolean Formula? Let

MIN = {φ(�x) | (∀ψ(�x), |ψ(x)| < |φ(x)])(∃�b)[φ(�b) �= ψ(�b)]}.
Clearly MIN ∈ 	

p
2. It is believed to not be 	p

2-complete but to also
not be in �p

1 or 	p
1. See the paper of Buchfuhrer and Umas [59] for more

information.
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11. #P

Leslie Valiant defined #P and proved most of the results in this
section [60,61].

Definition 5.71 A function f is in #P if there is a nondeterministic
program M that runs in polynomial time such that f (x) is the number of
accepting paths in the M(x) computation. A set A is in P#P if membership
of x ∈ A can be determined by a program in poly time that can ask questions
to a #P function.

When #P was first defined it was not clear if it was powerful. Clearly
NP ⊆ P#P but it was not clear if �p

2 ⊆ P#P. However, Toda [62] proved
the somewhat surprising result that PH ⊆ P#P. It is not know if this
containments is proper. If PH = P#P then PH collapses, hence most
theorists think PH ⊂ P#P.

We give examples of natural problems in #P.

Example 5.72 Let f (φ) be the number of satisfying assignments of φ. This
problem is clearly in #P. Of more importance is that its #P-complete and
hence unlikely to be computable in PH.

Example 5.73 For most NP-complete problems, the function that returns
the number of solutions (e.g., the number of Hamiltonian cycles) is #P-
complete.

Example 5.74 There are some problems in Polynomial time where finding
the number of solutions is #P-complete. In particular, (1) finding the
number of matchings in a graph and (2) finding the number of Eulerian
cycles in a directed graph are #P-complete. Strangely enough, finding
the number of Eulerian cycles in an undirected graph can be done in
polynomial time.

Example 5.75 The Permanent of a matrix is just like the determinant but
without the negative signs. Valiant’s motivation was as follows: computing
the determinant is easy (polynomial time), but computing the permanent
seemed hard. Valiant showed that computing the permanent is #P-complete
and hence likely quite hard.
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12. PSPACE

Definition 5.76 PSPACE is the set of problems that can be solved
using space bounded by a polynomial in the length of the input. For-
mally PSPACE = DSPACE(nO(1)). By Theorem 19.1 PSPACE =
NSPACE(nO(1).

Clearly P#P ⊆ PSPACE. It is not known if this inclusion is proper;
however, If P#P = PSPACE then PH collapses. Hence, most theorists think
P#P �= PSPACE.

The following problems are PSPACE-complete. Hence, the are in
PSPACE and unlikely to be in P#P.

Example 5.77 Given two regular expressions, are they equivalent? For-
mally

REGEXPEQUIV = {(α,β) | L(α) = L(β)}.
(α and β are regular expressions.)

Example 5.78 HEX is a simple two-player game. Given a position,
determining if the player whose move it is wins. Note that we allow any
sized board.

Example 5.79GO is a popular game in Japan and China. There are several
versions. Given a position (on an n×n board) determine if the player whose
move it is wins the ko-free version. (The versionwith ko-rules is EXPTIME
complete.)

13. EXPTIME

Definition 5.80 EXPTIME = DTIME(2n
O(1)
).

The following problems are in EXPTIME-complete and hence not in P.

Example 5.81 Generalized Chess. Given an n× n chess board with pieces
on it, does the player whose move it is win?

Example 5.82 Generalized Checkers. Given an n× n checker board with
pieces on it, does the player whose move it is win?
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Example 5.83 Generalized Go (with Japanese Ko rules). Given an n × n
Go board with pieces on it, does the player whose move it is win, playing
Japanese Ko rules?

14. EXPSPACE = NEXPSPACE

Definition 5.84 EXPSPACE = DSPACE(2n
O(1)
). By Theorem 19.1

EXPSPACE = NSPACE(2n
O(1)
).

Clearly EXPTIME ⊆ EXPSPACE. It is not known if this inclusion
is proper; however, most theorists think EXPTIME �= EXPSPACE. By
Theorem 21 PSPACE ⊂ EXPSPACE.

We present a natural problem that is NEXPSPACE-complete and hence
not in PSPACE. The statement is due to Meyer and Stockmeyer [63].

In textbooks, one often sees expressions like a5b2. These are not formally
regular expressions; however, there meaning is clear and they can be
rewritten as such: aaaaabb. The difference in representation matters. If we
allow exponents, then Regular Expressions can be represented far more
compactly. Note that an is written in O(log n) space, where as aaa · · · a
(n times) takes O(n) space.

Definition 5.85 Let � be a finite alphabet. A Textbook Regular Expression
(henceforth t-Reg Exp) is defined as follows.
• For all σ ∈ �, σ is a t-reg exp.
• ∅ is a t-reg exp
• If α and β are t-reg exps, then so is α ∪ β, αβ and α∗
• If α is a t-reg exp, and n ∈ N then αn is a t-reg exp.
If α is a t-reg exp, then L(α) is the set of strings that α generates.

Here is the question which we call t-reg expression equivalence

TRE = {(α,β) | α,β are t-reg expressions and L(α) = L(β)}.
Note 5.86 In the original paper, this is called Regular expression with squaring.
They originally had a formulation like mine but since people thought
maybe they were coding things into bits (they weren’t) they changed the
name. Frankly I think the formulation of t-reg exp is more natural.

Meyer and Stockmeyer showed that TRE is NEXPSPACE-complete
and hence not in PSPACE. Note that it is also not in P. Is it natural? See
the Section 25 for a literal discussion of that issue.
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15. DTIME(TOWi(n))

Definition 5.87
1. TOW0(n) = n
2. For i ≥ 1, let TOWi(n) = 2TOWi−1(n).

By Theorem 20 we have that, for all i, DTIME(TOWi(nO(1))) ⊂
DTIME(TOWi+1(nO(1))). For each i, we give an example that is arguably
natural.

We give a natural problem that is in DTIME(TOW3(n) and requires at
least 22

cn
time for some constant c. Its exact complexity is known but is

somewhat technical.
The problem will be given a set of sentences in a certain restricted

mathematical language, determine if it’s true. We need to define the
language.

We will only use the following symbols.
1. The logical symbols ∧, ¬, (∃).
2. Variables x, y, z, . . . that range over N.
3. Symbols: =, <, +
4. Constants: 0,1,2,3,. . ..
We call this Presburger Arithmetic in honor of the man who proved it was
decidable.

Definition 5.88 A term is:
1. If t is a variable or a constant, then t is a term.
2. If t1 and t2 are terms, then t1 + t2 is a term.

Definition 5.89 An Atomic Formulas is:
1. If t1, t2 are terms, then t1 = t2 is an Atomic Formula.
2. If t1, t2 are terms, then t1 < t2 is an Atomic Formula.

Definition 5.90 A Presburger Formula is defined similar to how a WS1S
formula was defined, given that we have defined Atomic formulas.

Is x < y + z true? This is a stupid question since we don’t know what
x, y, z are. But if we quantify over all of the variables then a truth value
exists. For example,

(∃x)(∃y)(∃z)[x < y+ z] is true
(∃x)(∃y)(∀z)[x < y+ z] is true
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(∃x)(∀y)(∃z)[x < y+ z] is true
(∃x)(∀y)(∀z)[x < y+ z] is false
(∀x)(∃y)(∃z)[x < y+ z] is true
(∀x)(∃y)(∀z)[x < y+ z] is true
(∀x)(∀y)(∃z)[x < y+ z] is true
(∀x)(∀y)(∀z)[x < y+ z] is false

A sentence is a formula where all of the variables are quantified over. We
can now (finally!) define our problem: Given a sentence φ in Presburger
arithmetic is it true?
• Presburger proved that this problem is decidable. His proof did not yield

time bounds.
• Later a proof was found that involved quantifier elimination. Given a

sentence we can find an equivalent one with one less quantifier. This
algorithm puts this problem in DTIME(TOW3(n)).

• Fisher and Rabin showed that there exists a constant c such that this
problem requires time at least 22

cn
.

16. DSPACE(TOWi(nO(1)))

By Theorem 21 we have that, for all i, DSPACE(TOWi(nO(1))) ⊂
DSPACE(TOWi+1(nO(1))). For each i, we give an example that is arguably
natural. It is a variant of the problem TRE from Section 14.

Definition 5.91 Let� be a finite alphabet. Let i ∈ N. An i-Textbook Regular
Expression (henceforth i-t-Reg Exp) is defined as follows.
• For all σ ∈ �, σ is an i-t-reg exp.
• ∅ is a i-t-reg exp
• If α and β are i-t-reg exps, then so is α ∪ β, αβ and α∗
• If α is an i-t-reg exp and n, k ∈ N, then αTOWi(nk) is an i-t-reg exp.

Here is the question which we call i-t-reg expression equivalence

TRE = {(α,β) | α,β are i-t-reg expressions and L(α) = L(β)}.
This problem can be proven to be in DSPACE(TOWi(nO(1))) −

DSPACE(TOWi−1(nO(1))) similar to the proof of Meyer and Stockmeyer
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that TRE is not in PSPACE. I believe this is the first time this fact was
noted.

17. ELEMENTARY

Definition 5.92 The complexity class EL (for Elementary) is defined by

EL =
∞⋃
i=0

DTIME(TOWi(n)).

It is known that, for all i, DSPACE(TOWi(n)) ⊂ EL.
Virtually everything one would ever want to compute is Elementary. In

the next section, we give an example of a problem which is computable (in
fact, primitive recursive) but not elementary.

18. PRIMITIVE RECURSIVE

We will define the primitive recursive functions in stages.

Definition 5.93 Let PR0 be the following functions:
1. Let n, c ∈ N. Then the function f (x1, . . . , xn) = c is in PR0.
2. Let n ∈ N and 1 ≤ i ≤ n. Then the function f (x1, . . . , xn) = xi is in

PR0.
3. Let n ∈ N and 1 ≤ i ≤ n. Then the function f (x1, . . . , xn) = xi + 1 is

in PR0.

Definition 5.94 For i ≥ 1, the following functions are in PRi.
1. All h ∈ PRi−1.
2. Let k, n ∈ N. Let f ∈ PRi−1 where f : N

n → N. Let
g1, . . . , gn ∈ PRi−1 where gi : N

k → N. Then h(x1, . . . , xk) =
f (g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is in PRi. (This is just composition.)

3. Let n ∈ N. Let f , g ∈ PRi−1 where f : Nn → N and g : Nn+2 → N. Let
h : Nn+1 → N be defined by
a. h(x1, . . . , xn, 0) = f (x1, . . . , xn)
b. h(x1, . . . , xn, x+ 1) = g(x1, . . . , xn), x, h(x1, x2, . . . , xn, x)
(This is just recursion.)

Definition 5.95 A function is Primitive Recursive if it is in
⋃∞
i=0 PRi. We

denote the set of sets in DTIME(f ) where f is primitive recursive by
PRIMREC.
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One can show that addition is in PR1, multiplication is in PR2,
Exponentiation is in PR3, TOWn(2) is in PR4. More to the point, virtually
any function encountered in normal mathematics is primitive recursive.

Clearly EL ⊆ PRIMREC. In fact EL ⊂ PRIMREC. We give a
example of a natural problem that is in PRIMREC but not EL.

Example 5.96 The problem will be given a sentences in a certain restricted
mathematical language, determine if it’s true. We need to define the
language.

Recall that in Section 4 we defined WS1S formulas.
A sentence is a formula where all of the variables are quantified over. As

noted in the discussion of Presburger arithmetic, formulas do not have a
truth value but sentences do. We can now define our problem: Given a
sentence φ in WS1S is it true?
• Buchi [64] showed that this problem is decidable using finite automata.

This involves using the fact that formulas give rise to regular sets (see
Section 4). Using this method, every time there is an alternation of
quantifiers you need to do an NDFA to DFA transformation. Hence,
this procedure takes roughly TOWn(2) steps where n is the number
of alternations of quantifiers. Therefore the algorithm is primitive
recursive; however, since the subscript depends on the input, the
function TOWn(2) is not in EL.

• Meyer [65] showed that the algorithm sketched above is optimal. Hence,
the problem is not in EL.

• One can define S1S which allows quantification of infinite sets.
Buchi [66] showed that this theory is decidable. The proof uses ω-
automata which run on infinite strings. In the algorithm for deciding
WS1S, DFA’s are manipulated and tested but never actually ran. So the
fact that an ω-automata takes an infinite string as input is not a problem.
The proof that S1S is decidable is rather difficult.

• WS1S and S1S both involve having one successor function. What
does it mean to have two successors? Our basic objects are numbers.
We could view numbers as strings in unary. In that case S(x) = x1.
If our basic objects were strings in {0, 1}∗, then we could have two
successors S0(x) = x0 and S1(x) = x1. This yields two theories:
WS2S and S2S. Rabin [67] proved that both are decidable. The proofs
for S2S used transfinite induction and is likely the hardest proof of a
theory being decidable. Easier proofs were later found by Gurevich and
Harrington [68,69]. Their complexities are primitive recursive but not
in EL.
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• How expressive is WS1S (and S1S, WS2S, S2S)? Is having them
decidable useful? There are two answers to this.
– WS1S and WS2S have been coded up and used [70]. Even though

these theories are not in EL the coding is very clever and the
problems they input to it are not that large. The proof that these
theories are difficult produce instances that are hard. These instances
are somewhat contrived and do not come up. The application has
been to search patters, temporal properties or reactive systems, parse
tree constraints. It has not been applied to solving open mathematical
conjecture. This us unlikely to happen as WS1S seems unable to
express anything of interest mathematically.

– The decidability of S1S and S2S has been use to prove other theories
decidable. We do not know of an implementation of either. It
is possible to state interesting theorems in S2S (See [67]). Great!
So perhaps we can input to an S2S decider an open question in
Mathematics and get the answer! There are two problems with this
(1) Coding up S2S would be extremely difficult, and getting it to
run quickly might be impossible. (2) Be careful what you wish for—
you might just get it: Lets say we really did have such a decider and
its fast. Lets say we input statements of The Goldbach Conjecture,
the Riemann Hypothesis, and P versus NP. Lets say it outputs YES,
YES, YES. Then we would know that these are all true. Oh. We
already sort of know that. It is not the purpose of math to just
establish whats true, but also why its true. The hope is that the proof
of (say) P �= NP will give great insight into computation. Just the
one bit YES would not.

• The last item challenges why we care about a theory being decidable.
(1) Hilbert wanted to (in today’s terminology) show that mathematics
is decidable to give it a rigorous foundation. Even though mathematics
is undecidable it is of intellectual interest to see how big a fragment of
math is decidable. (2) As the work on WS1S has shown there may be
fragments of those fragments that are decidable in good time and can be
used elsewhere (though unlikely used for mathematics itself).

We give another example, again a logical theory. We need to define the
language.

We will only use the following symbols.
1. The logical symbols ∧, ¬, (∃).
2. Variables x, y, z, . . . that range over R.
3. Symbols: =, <, +

Author's personal copy



278 William Gasarch

We call this Theory of the Reals.

Definition 5.97 A term is:
1. If t is a variable, then t is a term.
2. If t1 and t2 are terms, then t1 + t2 and t1t2 are terms.

Definition 5.98 An Atomic Formulas is:
1. If t1, t2 are terms, then t1 = t2 is an Atomic Formula.
2. If t1, t2 are terms, then t1 < t2 is an Atomic Formula.

Definition 5.99 A Formula is:
1. Any atomic formula is a Presburger formula.
2. If φ1, φ2 are Presburger formulas then so are

a. φ1 ∧ φ2,
b. φ1 ∨ φ2
c. ¬φ1
d. If φ(x1, . . . , xn) is a formula then so is (∃xi)[φ(x1, . . . , xn)]
A sentence is a formula where all of the variables are quantified over. We

can now (finally!) define our problem: Given a sentence φ in the theory of
the Reals is it true?
• Tarski [71] showed that this problem is decidable. His proof gave no

time bounds.
• There were several different proofs that gave time bounds. Some of the

people involved are Seidenberg, Cohen, Collins, Renegar, Heintz, Roy,
and Solerno. The papers of Renegar and Heintz–Roy–Solerno both
obtain the best known results: time TOW2(n) where n is the number of
quantifier alternations. See [72] for history and details.

• Fisher and Rabin [73] showed that the problem requires time 2�(n).

19. ACKERMANN’S FUNCTION

We define a somewhat natural computable function that is not
primitive recursive.

Note that any primitive recursive function uses the recursion rule some
fixed finite number of times. Ackermann’s function (below) intentionally
uses recursion a nonconstant number of times. While that is the intuition
as to why Ackermann’s function is not primitive recursive, the proof is not
easy.
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Definition 5.100 Ackermann’s function is defined as follows

A(m, n) =

⎧⎪⎨
⎪⎩

n+ 1 if m = 0

A(m− 1, 1) if m ≥ 1 and n = 0

A(m− 1,A(m, n− 1)) if m ≥ 1 and n ≥ 1

(5.1)

Ackermann’s function is an example of a function that is computable
but not primitive recursive. We have not been able to find a more natural
example. This raises the question: How natural is Ackermann’s function.

Ackermann’s function was originally defined for the sole purpose of
obtaining a computable function that was not primitive recursive. Hence,
it can be considered unnatural. However, over time they have shown up in
natural places. We give one example.

Example 5.101 Data Structures for Union Find
A Union-Find Data Structure is a data structure which supports a set of

sets. The basic operations are (1) FIND which will, given an item x will
determine if it is in the data structure, and if so which set it’s in, and (2)
UNION given two sets replace them with the union of the two. One could
ask how many steps a FIND costs and how many steps a UNION costs.
This is not the right question. One anticipates doing many FINDs and
UNIONs. So here is the right question: how much time does it take to do
n operations? Note that it could be that one of them takes a long time but
then many take very little time.

Tarjan and Van Leeuwen [74] showed that this problem (1) can be done
in timeO(nα(n)),and (2) requires time�(nα(n)), where α(n) is the inverse
of the Ackerman function. This means the problem cannot be done inO(n)
time but it can be done in just barely more than that. Of interest to us is
that Ackermann’s function appears in the analysis of this natural problem!

Definition 5.102 Let ACK = DTIME(A(n)).

20. THE GOODSTEIN FUNCTION

We do not define a complexity class in this section. We define
a somewhat natural computable function that grows much faster than
Ackermann’s function.

We first define a function that doesn’t grow that fast but contains many
of the ideas. We do this by example. Say the input is 213. We write this
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as (213)10 to indicate that the number is in base 10. Subtract 1 from the
number but put it into base 11 to obtain (212)11. Keep doing this go get
(211)12, (210)13. Note that 210 is in base 13 so it’s really 2 × 132 + 1 ×
13+ 0× 130. Hence, if you subtract 1 then in base 13 you get 20(12). We
increase the base to get (20(12))14. Keep doing this. Initially the value is
going up. But eventually it will come down to 0. f (213) is the number of
iterations of this process you need to get down to 0. This function grows
pretty fast but is till primitive recursive.

We now define the Goodstein function. First off, we will begin in base
2 (this is not important but lets us give a real example). We’ll again take the
input 213. First write it in base 2:

213 = 27 + 26 + 24 + 22 + 20.

We now write the exponents in base 2:

213 = 22
2+21+20 + 22

2+21 + 22
2 + 22

1 + 20.

We can stop here since all of the exponents are 0,1, or 2. If they were
bigger we would again write them in base 2.

We again subtract 1 but then rather than increase the base we increase
all of the bases. So in the next iteration we have

33
2+31+30 + 33

2+31 + 33
2 + 33

1
.

This process will initially increase but eventually decrease to 0. f (213)
is the number of iterations before 0 is reached. This function grows much
faster than Ackermann’s function.

Is the Goodstein function natural? Goodstein used them to investigate
various phenomena in logic. Later Paris and Kirby [75] showed that the
statement that the Goodstein function always exists (that is, the process
always terminates) cannot be proven in Peano Arithmetic. Hence, the
Goodstein function is natural to logicians! However, since I can explain the
function easily, and show it exists easily, and it’s fun, I call that natural.

Definition 5.103 Let GOOD be DTIME(G(n)) where G(n) is the
function defined above.

21. DECIDABLE, UNDECIDABLE AND BEYOND

Definition 5.104 A set A is Decidable (henceforth DEC) if there exists
a program M such that
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1. If x ∈ A then M(x) outputs YES.
2. If x /∈ A then M(x) outputs NO.
Note that there are no time or space bounds.

Clearly all the classes defined so far in this chapter are subsets of DEC.
Are there any problems that are undecidable? That is, are there any

problems that no computer can solve. We give two natural ones.

Example 5.105 The Halting Problem:Given a programM and an input
x, does M(x) terminate? We write it as a set:

HALT = {(M , x) | (∃s)[ If you run M(x) for s steps then it will halt ]}.
One attempt to solve HALT is to runM(x); however, ifM(x) does not

halt you will never know. This failed attempt is not a proof that HALT /∈
DEC. However, it is true: HALT /∈ DEC. The proof is in most textbooks
on Formal Language theory or computability theory. Alternatively, there is
a proof in the style of Dr. Seuss [76].

HALT is natural but it refers to programs. Is there a natural problem
that is not in DEC that does not refer to programs? Yes!

Example 5.106 Diophantine Polynomials: Given a polynomial
p(x1, . . . , xn) with integer coefficients, does there exist b1 . . . , bn ∈ N

such that p(b1, . . . , bn) = 0. This problem turns out to be undecidable.
In 1900, David Hilbert, a very prominent mathematician, proposed 23

problems for mathematicians to work on for the next 100 year. Some of
the problems were not quite well defined (e.g., Problem 6: Make Physics
Rigorous) so it’s hard to say how many have been solved; however, experts
say that about 90% have been solved. See [77] for more information.

Hilbert’s tenth problem was the following: given a polynomial
p(x1, . . . , xn) with integer coefficients, determine if there exist b1 . . . , bn ∈
N such that p(b1, . . . , bn) = 0. To express this as a set,

H10 = {p(x1, . . . , xn) | (∃b1, . . . , bns)[p(b1, . . . , bn) = 0]}.
Hilbert thought this problemwas a solvable problem inNumber Theory.

He was incorrect. Two papers together, one by Davis, Putnam, and
Robinson [78] and one byMatijasevic [79] showed thatH10 /∈ DEC. They
essentially showed that if this could be solved then the Halting problem
could be solved.

How do these problems compare to each other? Can there be even
harder problems? What does harder mean in this context? For problems
of this type, we cannot talk about time or space bounds. But we can talk
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about how easy it is to express them. We can write the halting problems as
membership in the following set:

We rewrite HALT . Let

B = {((M , x), s) | If you run M(x) for s steps then it will halt }.
Note that B is decidable and

HALT = {(M , x) | (∃s)[((M , x), s) ∈ B]}.
We can write HALT as a there exists quantifier followed by something

decidable. This is analogous to writing SAT as a poly-bounded quantifier
followed by something in P. As such, we can define analogies of PH from
Section 10. While this is true mathematically this is false historically. The
hierarchy we are about to define came first.

Definition 5.107
1. A ∈ �1 if there exists a set B ∈ DEC such that

A = {x | (∃y)[(x, y) ∈ B]}.
This class is often called computably enumerable (c.e.) or recursively enumer-
able (r.e.). BothHALT andH10 are�1-complete. Hence, they are really
the same problem.

2. A ∈ 	1 if A ∈ �1.
3. A ∈ �2 if there exists a set B ∈ DEC such that

A = {x | (∃y)(∀pz)[(x, y, z) ∈ B]}.
4. A ∈ 	2 if A ∈ �2.
5. A ∈ �3 if there exists a set B ∈ DEC such that

A = {x | (∃y)(∀pz)(∀w)[(x, y, z,w) ∈ B]}.
6. A ∈ 	3 if A ∈ �3.
7. One can define �4,	4,�5,	5, . . ..
8. These sets form what is called the Arithmetic Hierarchy. We define AH =⋃∞

i=1�i =
⋃∞
i=1	i.

Clearly

�1 ⊆ �2 ⊆ �3 · · ·
and

	1 ⊆ 	2 ⊆ 	3 · · · .
and

(∀i)[	i ⊆ �i+1 and �i ⊆ 	i+1].
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In contrast to PH, these containments are known to be proper.
The following are examples of problems that are in these classes.

Throughout the examples poly means polynomial with integer coefficients. The
quantifiers are over the natural numbers.

Example 5.108 This will just be a rewriting of the H10 problem. QP
stands for Quantified Poly . φ(�x) will be a poly.

QP1 = {φ(�x) | (∃�b)[φ(�b) = 0]}.
QP1 is �1-complete and hence not in 	1.

Example 5.109 φ(�x, �y) means there are two sets of variables that are
distinguished.

QP2 = {φ(�x, �y) | (∃�b)(∀�c)[φ(�b,�c) = 0]}.
QP2 is �1-complete and hence not in 	1.

Example 5.110 One can define QPi. QPi is �i-complete and hence not
in 	i.

For the next few examples, letM1,M2,M3, . . . be the list of all programs
in some reasonable programming language. From the index i, we should be
able to recover the code for the program.

Example 5.111 As noted earlier,

HALT = {(M , x) | (∃s)[ If you run M(x) for s steps then it will halt ]}
is �1-complete and hence not in 	1.

Example 5.112 Let TOT be the set of program that halt on every input.
Formally

TOT = {M | (∀x)(∃s)[ If you run M(x) for s steps then it will halt ]}.
TOT is 	2-complete and hence not in �2. Note that we have not proven
this, but it is true.

Example 5.113 Let COF be the set of program that halt on all but a finite
set of inputs. Formally

COF = {M |(∃y)(∀x≥ y)(∃s)[ If you run M(x) for s steps then it will halt ]}.
COF is �3-complete and hence not in 	3. Note that we have not

proven this, but it is true.

Are there any natural problems that are not in AH? We give one.
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Example 5.114 The problem will be given a set of sentences in a certain
restricted mathematical language, determine if it’s true. We need to define
the language.

We will only use the following symbols.
1. The logical symbols ∧, ¬, (∃).
2. Variables x, y, z, . . . that range over N.
3. Symbols: +, ×.
4. Constants: . . . ,−3,−2,−1, 0, 1, 2, 3, . . .
We call this Arithmetic.

Definition 5.115 A term is:
1. If t is a variable or a constant, then t is a term.
2. If t1 and t2 are terms, then t1 + t2 is a term and t1 × t2 is a term.

Definition 5.116 An Atomic Formulas is: If t1, t2 are terms, then t1 = t2 is
an Atomic Formula.

Definition 5.117A Formula is defined the exact same way as for Presburger
arithmetic except that the atomic formulas are different.

A sentence is a formula where all of the variables are quantified over. We
can now define our problem: Given a sentence φ in arithmetic is it true?
• This problem is not in AH.
• There are theories even harder that involved quantification over sets.

22. SUMMARYOF RELATIONS BETWEEN CLASSES

Known Inclusions

REG ⊆ L ⊆ NL ⊆ P ⊆ R ⊆ NP

NP = �
p
1 ⊆ �

p
2 ⊆ �

p
3 ⊆ · · · ⊆ PH ⊆ P#P ⊆ PSPACE

(∀i)[�p
i ⊆ 	

p
i+1 ∧	p

i ⊆ �
p
i+1]

BPP ⊆ �
p
2 ∩	p

2

PSPACE ⊆ DTIME(TOW1(n)) ⊆ DTIME(TOW2(n)) ⊆ · · · ⊆ EL

PSPACE ⊆ DSPACE(TOW1(n)) ⊆ DSPACE(TOW2(n)) ⊆ · · · ⊆ EL

(∀i)[DTIME(TOWi(n)) ⊆ DSPACE(TOWi(n)) ⊆ DTIME(TOWi+1(n))]
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EL ⊆ PRIMREC ⊆ ACK ⊆ GOOD ⊆ DEC

DEC ⊆ �1 ⊆ �2 ⊆ �3 ⊆ · · · P#P ⊆ AH

Known Proper Inclusions

REG ⊂ L ⊂ PSPACE ⊂ DSPACE(TOW1(n))

⊂ DSPACE(TOW2(n)) ⊂ · · · ⊂ EL

NPDTIME(TOW2(n)) ⊂ DTIME(TOW3(n)) ⊂ · · · ⊂ EL

(∀i)[DTIME(TOWi(n)) ⊂ DSPACE(TOWi+1(n))

⊂ DTIME(TOWi+2(n))]
EL ⊂ PRIMREC ⊂ ACK ⊂ GOOD ⊂ DEC

DEC ⊂ �1 ⊂ �2 ⊂ �3 ⊂ · · · P#P ⊂ AH

(∀i)[�i �= 	i]
What Most Theorists Think

L ⊂ NL ⊂ P = R = BPP ⊂ NP ⊂ �
p
2 ⊂ �

p
3 ⊂ · · · ⊂ PSPACE

NP ⊂ 	
p
2 ⊂ 	

p
3 ⊂ · · · ⊂ PSPACE

23. OTHER COMPLEXITY MEASURES

This chapter has focused on worst case analysis where we are
interested in time or space. There are other ways to measure complexity
which may be more realistic.
1. Average case analysis: There has been some work on formalizing average

case analysis. Rather than see how an algorithm works in the worst case,
one looks at how it works relative to a distribution. But what distribution
is realistic? This is very hard to determine.

2. Approximation Algorithms: For many NP-complete problems there are
approximation algorithms that are fast and give an answer that is close
to the optimal (e.g., within twice). There are also lower bounds as well.
Some of these algorithms are useable in the real world.

3. Heuristic algorithms: There are some rules-of-thumb that seem to work
on particular problems. Such approaches tend to work well in the real
world but are very hard to analyze.
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4. Fixed Parameter Tractable: In Section 9, we looked at the Vertex Cover
problem. For general k it is NP-complete. For fixed k it is not O(nk) but
instead just O(1.2738k + kn). Many NP-complete problems are Fixed
Parameter Tractable meaning that if you fix a parameter they can be solved
quite fast.

5. Streaming Algorithms: The input is a sequence of n numbers where n is
quite large. So large that you cannot store n in main memory. We model
this by saying we can only pass over the sequence p times and only use
f (n) space where f (n) is much less than n. If we want to find the most
common element, can we do that with 2 passes and O(log n) space?
Algorithms for these kinds of problems are randomized and approximate.
They are called Streaming Algorithms

24. SUMMARY

In this chapter, we defined many complexity classes. The classes
spanned a rather large swath of complexities from O(1) space to various
shades of undecidability. For each class, we gave examples of natural
problems that are in them but likely (or surely) not in lower classes. Hence,
we have been able to determine how hard many natural problems are.

This classification is a good first cut at getting to the real issue of how
hard these problems are. But they are not the entire story since once a
problem is discovered to be hard it still needs to be solved. What do you
do? W.C. Fields said

If at first you don’t succeed, give up.
No use making a damn fool of yourself.

We respectfully disagree. If a problem is hard all that means is that finding
a solution that gives the exact answer in quickly in all cases is hard. It could
well be that the problem you really want to solve, perhaps a subcase, perhaps
an approximation, may still be doable. This is not a pipe dream—many NP-
complete problems can be approximated quite well. Section 23 discusses this
and other possible ways around hardness results.

We speculate that theory and practice will come closer together as
theorists define more realistic classes, and practitioners discover that the
size of problems they are working is large enough so that asymptotic results
really are useful.
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25. WHAT IS NATURAL?

Darling: Bill, since we still don’t know that P �= NP, are there any
problems that are provably not in P?

Bill: Yes there are such problems! (Thinking of using a diagonalization
proof to create one that exists for the sole purpose of not being in P.)

Darling: Great! Unless it’s one of those dumb-ass sets that you construct
for the sole purpose of not being in P.

Bill: Oh. You nailed it. Okay, so you want a natural problem that’s not in
P. How about HALT .

Darling: Nice try Bill. I want a decidable natural problem that is known
to not be in P.

Bill: Do you consider fragments of arithmetic, like Presburger Arithmetic
or WS1S, to be natural?

Darling: If it requires a page of definitions then not.

Bill: Oh. OH, I have it! I know a problem that is natural, decidable, easy
to describe, and known to not be in P.

Darling: Do tell!

Bill: Add to regular expressions the ability to use exponents like a100 instead
of writing a · · · a (100 times). We’ll call these t-reg exps. Given two t-reg
exp do they generate the same set? This problem is EXPSPACE-complete
hence not in PSPACE, hence not in P.

Darling: Why is that problem natural?

Bill: Good question. On the one hand, I didn’t construct the problem for
the sole purpose of not being in P. So it’s not a dumb ass problem. Does it
then raise to the level of being natural?

Darling: Perhaps it’s intermediary between dumb ass and natural. An
intermediary problem. Like graph isomorphism is likely not in P nor
NP-complete.
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Bill: Okay, I’ll take that. Now here is one that might be more natural:
Given an n× n chess board with pieces—interrupted.

Darling: Unless n = 8 this isn’t really chess.

Bill: I find both t-reg exps and generalized chess natural because people
could have worked on those problems. The fact that people didn’t is not the
point. They both use notions people did study.

Darling: You’ll call them natural, I’ll call them (0.5)natural, and we can
agree to disagree.

Bill: Yeah!
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