1 Introduction to \(\mathcal{NP} \)

Recall the definition of the class \(\mathcal{P} \):

Def 1.1 \(A \) is in \(\mathcal{P} \) if there exists a Turing machine \(M \) and a polynomial \(p \) such that

- If \(x \in A \) then \(M(x) = YES \).
- If \(x \notin A \) then \(M(x) = NO \).
- For all \(x \) \(M(x) \) runs in time \(\leq p(|x|) \).

The typical way of defining \(\mathcal{NP} \) is by using non-deterministic Turing machines. We will NOT be taking this approach. We will instead use quantifiers. This is equivalent to the definition using nondeterminism.

Def 1.2 \(A \) is in \(\mathcal{NP} \) if there exists a set \(B \in \mathcal{P} \) and a polynomial \(p \) such that

\[
L = \{ x \mid (\exists y)[|y| = p(|x|) \land (x, y) \in B] \}.
\]

Here is some intuition. Let \(A \in \mathcal{NP} \).

- If \(x \in A \) then there is a SHORT (poly in \(|x|\)) proof of this fact, namely \(y \), such that \(x \) can be VERIFIED in poly time. So if I wanted to convince you that \(x \in L \), I could give you \(y \). You can verify \((x, y) \in B\) easily and be convinced.

- If \(x \notin A \) then there is NO proof that \(x \in A \).

2 \(\mathcal{NP} \) Completeness

Def 2.1 A reduction (also called a many-to-one reduction) from a language \(L \) to a language \(L' \) is a polynomial-time computable function \(f \) such that \(x \in L \) iff \(f(x) \in L' \). We express this by writing \(L \equiv_{\text{m}} L' \).

It may be verified that all the above reductions are transitive.
2.1 Defining NP Completeness

With the above in place, we define NP-hardness and NP-completeness:

Def 2.2 A language L is NP-hard if for every language $L' \in \text{NP}$, there is a reduction from L' to L. A language L is NP-complete if it is NP-hard and also $L \in \text{NP}$.

We remark that one could also define NP-hardness via *Cook* reductions. However, this seems to lead to a different definition. In particular, oracle access to any coNP-complete language is enough to decide NP, meaning that any coNP-complete language is NP-hard w.r.t. Cook reductions. On the other hand, if a coNP-complete language were NP-hard w.r.t. reductions, this would imply $\text{NP} = \text{coNP}$ (which is considered to be unlikely).

We show the “obvious” NP-complete language:

Theorem 2.3 Define language L via:

$$L = \{ \langle M, x, 1^t \rangle \mid M \text{ is a non-deterministic T.M. which accepts } x \text{ within } t \text{ steps} \}.$$

Then L is NP-complete.

Proof: It is not hard to see that $L \in \text{NP}$. Given $\langle M, x, 1^t \rangle$ as input, non-deterministically choose a legal sequence of up to t moves of M on input x, and accept if M accepts. This algorithm runs in non-deterministic polynomial time and decides L.

To see that L is NP-hard, let $L' \in \text{NP}$ be arbitrary and assume that non-deterministic machine $M'_{L'}$ decides L' and runs in time n^c on inputs of size n. Define function f as follows: given x, output $\langle M'_{L'}, x, 1^{|x|^c} \rangle$. Note that (1) f can be computed in polynomial time and (2) $x \in L' \iff f(x) \in L$. We remark that this can be extended to give a Levin reduction (between R_L and $R_{L'}$, defined in the natural ways).

3 More NP-Compete Languages

It will be nice to find more “natural” NP-complete languages. The first problem we prove NP-complete will have to use details of the machine model- Turing Machines. All later results will be reductions using known NP-complete problems.

Def 3.1

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\bar{x}) \in \text{SAT}$ if there exists a vector \bar{b} such that $\phi(\bar{b}) = \text{TRUE}$.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals.
3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals.

The following was proven by Stephen Cook and Leonid Levin independently around 1970.

Theorem 3.2 CNFSAT is NP-complete.

Proof: It is easy to see that $\text{CNFSAT} \in \text{NP}$.
Let $L \in \text{NP}$. We show that $L \leq^\text{P} \text{CNFSAT}$.
Let M be a TM and p,q be polynomials such that

$$L = \{ x \mid (\exists y)[|y| = q(|x|) \text{ AND } M(x, y) = 1] \}$$

and $M(x, y)$ runs in time $q(|x| + |y|)$.

We will actually have to deal with the details of the M. Let $M = (Q, \Sigma, \delta, \Sigma, \delta, q_0, h)$
We will also need to represent what a Turing Machine is doing at every stage.
The machine itself has a tape, something like

```
#abba#ab@ab#a
```

(We assume that everything to the right that is not seen is a #. Our convention is that you CANNOT go off to the left— from the left most symbol you can’t go left.)
is in state q and the head is looking at (say) the @ sign.
We would represent this

```
#abba#ab(\&, q)a
```

That is our convention— we extend the alphabet and allow symbols $\Sigma \times Q$. The symbol $(\&, q)$ means the symbol is $\&$, the state is q, and that square is where the head of the machine is.

If $x \in L$ then there is a y of length $q(|x|)$ such that the Turing machine on M accepts.
Let us say that with more detail.
If $x \in L$ then there is a y and a sequence of configurations C_1, C_2, \ldots, C_t such that

- C_1 is the configuration that says ‘input is $x\#y$, and I am in the starting state.’
- For all i, C_{i+1} follows from C_i (note that M is deterministic) using δ.

3
• C_t is the configuration that says “END and output is 1”

• $t = p(|x| + q(|x|))$.

How to make all of this into a formula?

KEY 1: We will have a variable for every possible entry in every possible configuration. Hence the variables are $z_{i,j,\sigma}$ where $1 \leq i, j \leq t$, and $\sigma \in \Sigma \cup Q$. The intent is that if there is an accepting sequence of configurations then $z_{i,j,\sigma} = T$ iff the j symbol in the ith configuration is σ.

To just make sure that for every i, j there is a unique σ such that $z_{i,j,\sigma} = T$ we have, for every $1 \leq i \leq j$, the following clauses.

$$\bigvee_{\sigma \in \Sigma \cup Q} z_{i,j,\sigma}$$

(Note- the actual formula would write out all of this and not be allowed to use \bigvee. With Poly time it MATTERS what kind of representation you use since we want computations to be poly time in the length of the input.)

for each $\sigma \in \Sigma \cup (\Sigma \times Q)$

$$z_{i,j,\sigma} \rightarrow \bigvee_{\tau \in (\Sigma \cup (\Sigma \times Q)) - \{\sigma\}} \neg z_{i,j,\tau}$$

(It is an easy exercise to turn this into a set of clauses.)

KEY 2: The parts of the formula that say that C_1 is the starting configuration for $x\#y$ on the tape, and C_t is the configuration for saying DONE and output is 1, are both easy. Note that for the y part - WE DO NOT KNOW y. So we have to write that the y is a sequence of elements of Σ of length $q(|x|)$.

Recall our convention for the first and last configuration:

Intuitively we start out with x and y laid out on the tape, and the head looking at the $\#$ just to the right of y. The machine then runs, and if it gets to the q_{accept} state then it accepts.

The following formula says that C_1 says ‘start with x’ Let $x = x_1 \cdots x_n$.

$$z_{1,1,x_1} \land \cdots \land z_{1,n,x_n} \land x_{1,n+1,\#} \land$$

$$\bigwedge_{i=n+2}^{n+q(|x|)+1} \bigvee_{\sigma \in \Sigma} z_{i,\sigma}$$

$$\land z_{1,q(n)+n+2,(\#),s} \land \bigwedge_{i=q(n)+n+3}^{t(n)} z_{i,\#}$$

Note that this formula is in CNF-form.

The following formula says that C_t says ‘ends with accept’
\[
\bigvee_{i=1}^{t(n)} \bigvee_{\sigma \in \Sigma} z_{t,i}(\sigma, q_{\text{accept}})
\]

KEY 3: How do we say that going from \(C_i \) you must goto \(C_{i+1} \). We first do a thought experiment and then generalize. What if

\[
\delta(q, a) = (p, b).
\]

Then if the \(C_i \) says that you are in state \(q \) and looking at an \(a \) then \(C_{i+1} \) must be in state \(p \) and overwrite \(a \) with \(b \). Note that in both cases *the rest of the configuration has not changed*.

How do we make this into a formula? The statement “\(C_i \) says that you are in state \(q \) and looking at an \(a \)” and the head is at the \(j \)th position is

\[
z_{i,j,(a,q)}
\]

We also have to know what else is around it. Assume that there is a \(b \) on the left and a \(c \) on the right. So we have

\[
(z_{i,j-1,b} \land (z_{i,j,(a,q)} \land (z_{i,j+1,c}).
\]

The statement that \(C_{i+1} \) is in state \(p \) and having overwritten \(a \) with \(b \)

\[
(z_{i+1,j-1,b} \land (z_{i+1,j,(b,p)} \land (z_{i+1,j+1,c}.
\]

This leads to the formula

\[
\bigwedge_{i,j=1}^{t} (z_{i,j-1,b} \land (z_{i,j,(a,q)} \land (z_{i,j+1,c} \rightarrow (z_{i+1,j-1,b} \land (z_{i+1,j,(b,p)} \land (z_{i+1,j+1,c}.
\]

This formula can be put into CNF-form.

For all of the \(\delta \) values we need a similar formula.

PUTTING IT ALL TOGETHER

Take the \(\land \) of the formulas in the last three KEY points and you have a formula \(\phi \)

\[
x \in L \iff \phi \in \text{CNFSAT}.
\]
4 Other NP-Complete Problems

Now that we have SAT is NP-Complete many other problems can be shown to be NP-complete. They come from many different areas of computer science and math: graph theory, scheduling, number theory, and others.

There are literally thousands of natural and distinct NP-complete problems!

5 Relating Function Problems to Decision Problems

Consider the NP-complete problem

\[\text{CLIQUE} = \{(G, k) \mid G \text{ has a clique of size } k\} \]

Note that while this is a nice problem, its not quite the one we really want to solve. We want to compute the function

\[\text{SIZECLIQUE}(G) = k \text{ such that } k \text{ is the size of the largest clique in } G. \]

Or we may want to compute

\[\text{FINDCLIQUE}(G) = \text{the largest clique in } G \text{ (Note- this is ambiguous as there could be a tie. This can be resolved in several ways.)} \]

How hard are these problems?

Theorem 5.1 CLIQUE and FINDCLIQUE are Cook-equivalent. In particular

1. CLIQUE can be solved with one query to FINDCLIQUE.

2. FINDCLIQUE(G) can be computed with \(\log n \) queries to CLIQUE

Proof:

The first part is trivial.

We give an algorithm for the second part.

1. Input \(G \)

2. Ask \((G, n/2) \in \text{CLIQUE}? \) If YES then ask \((G, 3n/4) \in \text{CLIQUE}. \) If NO then ask \((G, n/4) \in \text{CLIQUE}. \)

3. Continue using binary search until you get to the answer. This will take \(\log n \) queries.

The theorem above can be generalized to saying that if \(L \in NP \) then the function associated to it (this can be done in several ways) is Cook Equivalent to \(L \). Details will be on a HW.
6 The Polynomial Hierarchy

Recall (one of) the definitions of NP.

Def 6.1 $A \in \text{NP}$ if there exists a polynomial p and a polynomial predicate B such that
$$A = \{ x \mid (\exists y)[|y| \leq p(|x|) \land B(x, y)] \}.$$

What if we allowed more quantifiers? Then what happens?

Notation 6.2

1. The expression
 $$A = \{ x \mid (\exists y)[B(x, y)] \}$$
 means that there is a polynomial p such that
 $$A = \{ x \mid (\exists y, |y| \leq p(|x|))[B(x, y)] \}.$$

2. The expression
 $$A = \{ x \mid (\forall y)[B(x, y)]$$
 means that there is a polynomial p such that
 $$A = \{ x \mid (\forall y, |y| \leq p(|x|))[B(x, y)] \}.$$

3. The expression
 $$A = \{ x \mid (\forall y)(\exists z)[B(x, y, z)]$$
 means that there are polynomials p_1, p_2 such that
 $$A = \{ x \mid (\forall y, |y| \leq p_1(|x|))(\exists z, |z| \leq p_2(|x|))[B(x, y, z)] \}.$$

4. One can define this notation for as long a string of quantifiers as you like. We leave the formal definition to the reader.

In the following definition we include a definition and an alternative definition.

Def 6.3

1. $A \in \Sigma^p_0$ if $A \in \text{P}$. $A \in \Pi^p_0$ if $A \in \text{P}$. (We include this so we use it inductively later.)

2. $A \in \Sigma^p_1$ if there exists a set $B \in \text{P}$ such that
 $$A = \{ x \mid (\exists y)[B(x, y)] \}.$$
 This is just NP.
3. $A \in \Pi_p^p$ if there exists a set $B \in P$ such that

 $$A = \{ x \mid (\forall y) [B(x, y)] \}.$$

 This is just all sets A such that $A \in \overline{\text{NP}}$. It is often called co-NP.

4. $A \in \Sigma_p^p$ if there exists a set $B \in P$ such that

 $$A = \{ x \mid (\exists y) [B(x, y)] \}.$$

5. $A \in \Sigma_p^p$ (alternative definition) if there exists a set $B \in \Pi_p^p$ such that

 $$A = \{ x \mid (\exists y) [B(x, y)] \}.$$

6. $A \in \Pi_p^p$ if there exists a set $B \in P$ such that

 $$A = \{ x \mid (\forall y) [B(x, y)] \}.$$

7. $A \in \Pi_p^p$ (alternative definition) if $A \in \Sigma_p^p$.

8. Let $i \in \mathbb{N}$. If i is even then $A \in \Sigma_i^p$ if there exists $B \in P$ such that

 $$A = \{ x \mid (\exists y_1)(\forall y_2) \cdots (\forall y_i) [B(x, y_1, \ldots, y_i)] \}$$

 If i is odd then $A \in \Sigma_i^p$ if there exists $B \in P$ such that

 $$A = \{ x \mid (\forall y_1)(\exists y_2) \cdots (\exists y_i) [B(x, y_1, \ldots, y_i)] \}$$

9. Let $i \in \mathbb{N}$. If i is even then $A \in \Pi_i^p$ if there exists $B \in P$ such that

 $$A = \{ x \mid (\forall y_1)(\exists y_2) \cdots (\exists y_i) [B(x, y_1, \ldots, y_i)] \}$$

 If i is odd then $A \in \Pi_i^p$ if there exists $B \in P$ such that

 $$A = \{ x \mid (\forall y_1)(\exists y_2) \cdots (\forall y_i) [B(x, y_1, \ldots, y_i)] \}$$

10. Let $i \in \mathbb{N}$ and $i \geq 1$. $A \in \Sigma_i^p$ (alternative definition) if there exists $B \in \Pi_{i-1}^p$ such that

 $$A = \{ x \mid (\exists y) [B(x, y)] \}.$$

 (Note- we use the definition of Σ_0^p, Π_0^p here.)

11. $A \in \Pi_i^p$ (alternative definition) if $A \in \Sigma_i^p$.

12. The polynomial hierarchy, denoted PH, is $\bigcup_{i=0}^{\infty} \Sigma_i^p$. Note that this is the same as $\bigcup_{i=0}^{\infty} \Pi_i^p$.

Def 6.4 A set A is Σ_i^p-complete if both of the following hold.

1. $A \in \Sigma_i^p$, and

2. For all $B \in \Sigma_i^p$, $B \preceq_m A$.

8
Def 6.5 A set A is Π_p^i-complete if both of the following hold.
1. $A \in \Pi_p^i$, and
2. For all $B \in \Pi_p^i$, $B \leq_m^p A$.

Def 6.6 A set A is Π_p^i-complete (Alternative Definition) if \overline{A} is Σ_p^i-complete.

Example 6.7 In all of the examples below x and y and x_i are vectors of Boolean variables.
1. $A = \{ \phi(x, y) \mid (\exists b)(\forall c)[\phi(b, c)] \}$. This set is Σ_2^p-complete. It is clearly in Σ_2^p.
 This is called QBF_2. The QBF stands for Quantified Boolean Formula. The proof that it is Σ_2^p-complete uses Cook-Levin Theorem.
2. One can define QBF_i easily. It is Σ_p^i-complete.
3. QBF is the set of all $\phi(x_1, \ldots, x_n)$ (the x_i's are vectors of variables) such that $(\exists x_1)(\forall x_2) \cdots (Q x_n)[\phi(x_1, \ldots, x_n)]$. ($Q$ is \exists^p if n is odd and is \forall^p if n is even.)
 This set is thought to not be in any Σ_i^p or Π_i^p.
4. Let $TWO = \{ \phi \mid \phi$ has exactly two satisfying assignments $\}$. We show that $TWO \in \Sigma_2^p$.
 $TWO = \{ \phi \mid (\exists b, c)(\forall d)[b \neq c \land \phi(b) \land \phi(c) \land (\phi(d) \rightarrow ((d = b) \lor (d = c))) \} \}
 It is not known if TWO is Σ_2^p-complete; however it is thought to NOT be.
5. One can define $THREE$, $FOUR$, etc. easily. They are all in Σ_2^p.
6. One can define variants of TWO having to do with finding TWO Hamiltonian cycles, TWO k-cliques, etc. Also $THREE$, etc. These are all Σ_2^p.
7. $ODD = \{ \phi \mid \phi$ has an odd number of satisfying assignments $\}$ is thought to NOT be in PH.

Recall that
There are literally thousands of natural and distinct NP-complete problems!
What about Σ_2^p-complete problems? Other levels? Alas- there are very few of these. So why do we care about PH?

We think that $SAT \notin P$ since

$SAT \in P \rightarrow P = NP$.

We tend to think that PH does not collapse to a lower level of the hierarchy (e.g., that $PH = \Sigma_2^p$). Hence if we have a statement XXX that we do not think is true but cannot prove is false, we will be happy to instead show

$XXX \rightarrow PH$ collapses.
7 Collapsing PH

Theorem 7.1 If $\Pi^p_1 \subseteq \Sigma^p_1$ then $\text{PH} = \Sigma^p_1 = \Pi^p_1$.

Proof: Assume $\Sigma^p_1 = \Pi^p_1$. We first show that $\Sigma^p_2 = \Sigma^p_1$.
Let $L \in \Sigma^p_2$. Hence there is a set $B \in \Pi^p_1$ such that

$$L = \{ x \mid (\exists^p y)[(x, y) \in B] \}.$$

Since $B \in \Pi^p_1$, by the premise $B \in \Sigma^p_1$. Therefore there exists $C \in \text{P}$ such that

$$B = \{ (x, y) \mid (\exists^p z)[(x, y, z) \in C] \}.$$

Replacing this definition of B in the definition of L we obtain

$$L = \{ x \mid (\exists^p y)(\exists^p z)[(x, y, z) \in C] \}.$$

This is clearly in Σ^p_1. Hence $\Sigma^p_2 \subseteq \Sigma^p_1$. Hence we have $\Sigma^p_2 = \Sigma^p_1$. By complementing both sides we get $\Pi^p_2 = \Pi^p_1$.

One can now easily show that, for all i, $\Sigma^p_i = \Sigma^p_1$ by induction. One then gets $\Pi^p_i = \Pi^p_1$. Hence $\text{PH} = \Pi^p_1 = \Sigma^p_1$. \qed

The following theorems are proven similarly.

Theorem 7.2 Let $i \in \mathbb{N}$. If $\Pi^p_i \subseteq \Sigma^p_i$ then $\text{PH} = \Sigma^p_i = \Pi^p_i$.

Theorem 7.3 If $\Sigma^p_i \subseteq \Pi^p_i$ then $\text{PH} = \Sigma^p_i = \Pi^p_i$.