OPTIONAL HW TO HELP YOU STUDY

I WILL BE GOING OVER THIS ON NOV 4.

- 1. For every language below say if its
 - (1) Finite OR (2) Regular but not finite OR (3) CFL but not regular OR (4) P but not CFL.

Explain your answer (NOTE- this is all for own good and not being collected so if you guess you are in a stupid state.)

- (a) $\{w \mid n_a(w) = n_b(w) = n_c(w) = n_d(w)\}.$ $(n_{\sigma}(w) \text{ is how many times } \sigma \text{ appears in } w.)$
- (b) $\{a^nb^nc^n \mid n \in \mathbb{N}\}.$
- (c) $\{a^nb^mc^n \mid n, m \in \mathbb{N}\}.$
- (d) $\{a^{2n}b^{3n} \mid n \in \mathbb{N}\}.$
- (e) $\{a^n b^n c^{2n} \mid n \in \mathbb{N}\}.$
- (f) $\{a^{n^3} \mid n \in \mathbb{N}\}.$
- (g) $\{a^{2n+5} \mid n \in \mathbb{N}\}.$
- (h) $\{a^n \mid n \text{ is an even prime}\}.$
- 2. For each of the following say if its true or false. If true then prove it, if false then give a counterxample
 - (a) If L_1 and L_2 are Reg then L_1L_2 is Reg.
 - (b) If L_1 and L_2 are CFL's then L_1L_2 is a CFL.
 - (c) If L_1 and L_2 are in P then L_1L_2 is in P.
 - (d) If L is Reg then L^* is Reg.
 - (e) If L is CFL then L^* is CFL.
 - (f) If L is in P then L^* is in P.
- 3. Let $L \in DTIME(T(n))$.
 - (a) Give an algorithm for L^* .
 - (b) Fill in the following sentence: My Algorithm shows that L^* is in DTIME(XXX(n)).
- 4. Show that there exists a decidable language that is NOT in $DTIME(2^n)$.