
COMPUTABILITY AND COMPLEXITY TUTORIAL 10

Tutorial 10

Exercise 1 (compulsory)
Consider the following context-free grammar G in Chomsky normal form:

S → AA | ε
A→ BB | AB | a
B → BA | b

Following the algorithm in the proof of Theorem 7.16 (see also Lecture 10 and your notes) compute
the entries table(i, j) for all 1 ≤ i ≤ j ≤ 4 in order to show that abba ∈ L(G).

Solution:

l = 1

1 2 3 4
1 A
2 B
3 B
4 A

l = 2

1 2 3 4
1 A A
2 B A
3 B B
4 A

l = 3

1 2 3 4
1 A A S,A
2 B A A,S
3 B B
4 A

l = 4

1 2 3 4
1 A A S,A S,A
2 B A A,S
3 B B
4 A

Notice that S appears in the entry (1, 4), which implies that abba ∈ L(G).

Exercise 2 (compulsory)
Prove that the class P is closed under intersection, complement and concatenation.

Solution:

• Intersection. Let L1, L2 ∈ P. We want to show that L1 ∩ L2 ∈ P. Because L1 ∈ P then there
exists a TM M1 with time complexity O(nk1) for some constant k1. Because L2 ∈ P then there
exists a TM M2 with time complexity O(nk2) for some constant k2. We construct a decider M with
polynomial time complexity deciding L1 ∩ L2:

M = ”On input x:

1. Run M1 on input x
2. If M1 accepted, then run M2 on input x, else reject.
3. If M2 also accepted, then accept, else reject.”

In the worst case M will run both M1 and M2, in which case it uses O(nk1) + O(nk2) steps. Let
k = max(k1, k2). We then see that M has time complexity O(nk) and hence L(M) = L1∩L2 ∈ P.
(Note that we omitted the details where a copy of the string x for the machine M2 is stored while the
machine M1 is computing; this can be done e.g. on a second tape but we know that all deterministic
variants of Turing machines are polynomial-time equivalent.)

1

COMPUTABILITY AND COMPLEXITY TUTORIAL 10

• Complement. The same construction as for decidable languages (see e.g. slide 13 in Lecture 3). We
simply swap the accept and reject state. The running time of the modified machine does not change.

• Concatenation. We want to show that if L1, L2 ∈ P then L1 ◦ L2 ∈ P. Assume so that L1 ∈ P and
that L2 ∈ P. By definition, this means that there exist deciders M1 and M2 such that M1 is a decider
for L1 with time complexity O(nk1) and M2 is a decider for L2 with time complexity O(nk2) for
some constants k1 and k2.

The concatenation L1 ◦ L2 is defined as

L1 ◦ L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}

The decider for L1◦L2 must, given an input x, try to find a partition of x into x1x2 such that x1 ∈ L1

and x2 ∈ L2. Here is the decider:

”On input x = a1 . . . an

1. For i = 0 to n do
i. Let x1 = a1 . . . ai and x2 = ai+1 . . . an. (By agreement a1 . . . a0 = ε and
an+1 . . . an = ε).

ii. Run M1 on the input x1.
iii. Run M2 on the input x2.
iv. If both M1 and M2 accepted, then accept

2. If no choice of x1 and x2 led to acceptance, then reject”

We must now show that the decider has polynomial time complexity. The main loop of the decider
is traversed at most (n+1)-times. If we run M1 on a substring of x, this will take at most O(nk1)
steps. Similarly, running M2 on a substring of x will take at most O(nk2) steps. Consequently,
a single traversal of the loop body uses no more than O(nk1) + O(nk2) = O(nk) steps, where
k = max(k1, k2). The whole decider thus uses (n+ 1) ·O(nk) = O(nk+1) steps. Hence L(M) =
L1 ◦ L2 ∈ P.

Exercise 3 (compulsory)
Prove the following theorem.

Theorem: Let t(n) ≥ n be a function from natural numbers to positive reals. Then for every language
L ∈ NTIME(t(n)) there is a constant c such that L ∈ TIME(2c·t(n)).

Solution:
This is in fact a simple test on applying the definitions and Theorem 7.11 on page 260.

Assume a language L ∈ NTIME(t(n)) for some function t(n) ≥ n. By definition of NTIME there is a
nondeterministic single-tape TM M running in time O(t(n)) and deciding L. By Theorem 7.11 we know
that for M we can construct an equivalent TM M ′ such that M ′ is a single-tape deterministic decider for
L running in time 2O(t(n)). Because 2O(t(n)) means O(2c·t(n)) for some constant c, we get (by definition)
that L ∈ TIME(2c·t(n)) and we are done.

Exercise 4 (compulsory)
Every week someone manages to ”prove” that P = NP or that P 6= NP. Last week a very famous professor
published the following proof that P 6= NP:

Proof: Consider the following decider for HAMPATH :

2

COMPUTABILITY AND COMPLEXITY TUTORIAL 10

”On input 〈G, s, t〉:

1. Generate all possible permutations of nodes from G.

2. If one of these permuations (sequences of nodes) forms a Hamiltonian path, then accept.

3. Otherwise reject.”

Because there are n! different permuations of nodes to examine, the algorithm clearly does not run in
polynomial time. Therefore we have proved that HAMPATH has exponential time complexity and this
means HAMPATH 6∈ P. Because we know that HAMPATH ∈ NP, we conclude that P 6= NP.

Describe the error in the above proof.

Solution:
It is true that the suggested algorithm for HAMPATH does not run in polynomial time, but from this fact
we cannot conclude that the language HAMPATH does not belong to the class P. There can still be other
(faster) algorithms for HAMPATH that run in polynomial time; we simply did not exclude this possibility
by presenting one particular algorithm with an exponential running time. To conclude that HAMPATH 6∈
P we would have to show no algorithm for HAMPATH has a polynomial time complexity.

Exercise 5 (optional, but highly recommended)
Prove that the class P is closed under Kleene star. (Hint: use dynamic programming.)

Solution:
Let A ∈ P. We want to show that A∗ ∈ P. Since A ∈ P there exists a deterministic Turing machine MA

with time complexity O(nk) for some k ≥ 0.
We now build, using MA, a deterministic decider for A∗ and show that its time complexity is bounded

by a polynomial. The central observation in our construction is that w ∈ A∗ if and only if one of the
following conditions is true

• w = ε, or

• w ∈ A, or

• ∃u, v : w = uv and u ∈ A∗ and v ∈ A∗.

In the decider described below we let wi,j denote the substring of w = w1w2 . . . wn starting with wi

and ending with wj . The decider builds a table where table(i, j) = true if wi,j ∈ A∗. We do this by
considering all substrings of w starting with substrings of length 1 and ending with the substring of length
n.

”On input w = w1w2 . . . wn:
1. If w = ε then accept, else
2. For ` := 1 to n
3. For i := 1 to n− (`− 1)
4. j := i+ `− 1
5. Run MA on wi,j

6. If MA accepts wi,j then table(i, j) := true
7. Else
8. For k := i to j − 1
9. If table(i, k) = true and table(k + 1, j) = true
10. then table(i, j) := true
11. If table(1, n) = true then accept, else reject.”

We now analyze the complexity of our decider. The algorithm uses three nested loops, each of which
can be traversed at most O(n) times. In the second loop we run MA on an input of length at most n, so the
total time is at most O(n) ·O(n) · (O(nk) +O(n)) = O(n2+(max(k,1))) steps, which is polynomial in n.

3

