A Sane Proof that $C O L_{k} \leq \mathrm{COL}_{3}$

By William Gasarch

1 Introduction

Let $A \leq B$ mean that there is a polynomial-time computable function f such that $x \in A$ iff $f(x) \in B$.

Def 1.1 Let $k \geq 2 . C O L_{k}$ is the set of all graphs that are k-colorable

The following are well known.

- For all $k \geq 2, C O L_{k} \leq S A T$ (this is by the Cook-Levin Theorem).
- For all $k \geq 2$, For all $k \geq 3, S A T \leq C O L_{k}$, hence $C O L_{k}$ is $N P$-complete.
- If $a<b$ then $C O L_{a} \leq C O L_{b}$ by an easy reduction (Take G and add K_{b-a} and an edge from every elements of K_{b-a} to the original graph.)

The proof that $C O L_{3} \leq C O L_{4}$ is very easy: just add a vertex to G and connect it to all the elements of G. Is $C O L_{4} \leq C O L_{3}$? Yes via

$$
C O L_{4} \leq S A T \leq C O L_{3} .
$$

This is true but unsatisfying. One of my students said
It's counterintuitive and makes me sad.

So we asked informally: Is there a SANE reduction $\mathrm{COL}_{4} \leq \mathrm{COL}_{3}$. There is and we present it here. In fact we show $\mathrm{COL}_{k} \leq \mathrm{COL}_{3}$.

A sane proof is already known. Let $H C O L_{k}$ is the set of all hypergraphs that are k-colorable Lovasz [1] showed

$$
C O L_{k} \leq H C O L_{2} \leq C O L_{3}
$$

Our proof does not use $H C O L_{2}$ or any HCOL_{k}.

Def 1.2 $G A D(x, y, z)$ is the following graph. (The vertices that don't have labels are never referred to so we don't need to label them.)

We leave the proof of the following easy lemma to the reader.

Lemma 1.3 If $G A D(x, y, z)$ is three colored and x, y get the same color, then z also gets that color.

Def 1.4 $G A D\left(x_{1}, \ldots, x_{k}, z\right)$ consists of $G A D\left(x_{1}, x_{2}, y_{1}\right), G A D\left(y_{1}, x_{3}, y_{2}\right), G A D\left(y_{2}, x_{4}, y_{3}\right), \ldots$, $G A D\left(y_{k-3}, x_{k-1}, y_{k-2}\right)$, and $G A D\left(y_{k-2}, x_{k}, z\right)$. Note that, (1) not including $x_{1}, \ldots, x_{k}, z, G A D\left(y_{k-2}, x_{k}, z\right)$ has $3(k-2)+1=3 k-5 \leq 3 k$ vertices, and (2) $5(k-1)=5 k-5 \leq 5 k$ edges.

We leave the proof of the following easy lemma to the reader.

Lemma 1.5 Let $k \geq 2$. If $G A D\left(x_{1}, x_{2}, \ldots, x_{k}, z\right)$ is three colored and x_{1}, \ldots, x_{k} get the same color, then z also gets that color.

Theorem 1.6 Let $k \geq 2 . C O L_{k} \leq C O L_{3}$ by a simple reduction. Let f be the reduction. If G has n vertices and e edges then $f(G)=G^{\prime}$ has $\leq 2 k^{2} n+2 k e$ vertices and $\leq 3 k^{2} n+2 k e$ edges.

Proof: Let G have vertices v_{1}, \ldots, v_{n} and edge set E. We construct G^{\prime} :

1. Vertices T, F, R which will form a triangle. In any coloring they have different colors which we call T, F, R. This is 3 vertices and 3 edges. (We won't count these in the end since our crude upper bounds on the vertices and edges in G^{\prime} will clearly be over by at least 3.)
2. For $1 \leq i \leq n$ and $1 \leq j \leq k$ vertex $v_{i j}$. All of these will be connected by an edge to vertex R. This will be $k n$ vertices and $k n$ edges. Here is our intent and how we achieve it:
(a) For all $1 \leq i \leq n$ our intent is: $v_{i j}$ is colored T means that vertex v_{i} in G is colored j; $v_{i j}$ is colored F means that vertex v_{i} in G is NOT colored j.
(b) For all $1 \leq i \leq n$ we need that at least one of $v_{i 1}, \ldots, v_{i n}$ is colored T. Hence we need it to NOT be the case that $v_{i 1}, v_{i 2}, \ldots, v_{i n}$ are all colored F. We place the gadget $G\left(v_{i 1}, \ldots, v_{i n}, T\right)$ in the graph. If $v_{i 1}, \ldots, v_{i n}$ are all colored F then this gadget will not be 3-colorable. This is $\leq 3 k n$ vertices and $\leq 5 k n$ edges.
(c) For all $1 \leq i \leq n$ we need that at most one of $v_{i 1}, \ldots, v_{i k}$ is colored T. Hence we need that for each pair at most one is colored T. For each $1 \leq j_{1}<j_{2} \leq k$ we place the gadget $G A D\left(v_{i j_{1}}, v_{i j_{2}}, F\right)$. This is $n\binom{k}{2} \times 2 \leq k^{2} n$ vertices and $n\binom{k}{2} \times 5 \leq 2.5 k^{2} n$ edges.
3. For each edge $\left(v_{i}, v_{j}\right)$ in the original graph we want to make sure that v_{i} and v_{j} are not the same color. Place the gadgets $G A D\left(v_{i 1}, v_{j 1}, F\right), G A D\left(v_{i 2}, v_{j 2}, F\right), \ldots, G A D\left(v_{i k}, v_{j k}, F\right)$. This is $2 k e$ vertices and $5 k e$ edges.

Note that the number of vertices in G^{\prime} is $\leq k n+3 k n+k^{2} n+2 k e \leq 2 k^{2} n+2 k e$ vertices and $\leq k n+5 k n+2.5 k^{2} n+2 k e \leq 3 k^{2} n+2 k e$ edges.

Clearly G is k-colorable iff G^{\prime} is 3-colorable.

References

[1] L. Lovasz. Coverings and colorings of hypergraphs. In Proc. of the 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 3-12, 1973.

