6. $CTL_{F,G,X}$ LAB EXERCISES FOR APRIL 1, 2014

Exercise 4 (A familiar automaton). Consider the automaton in Figure 7.

Fig. 7. A simple automaton.

Using the algorithm, compute the set of states that satisfies AF[p].

Exercise 5 (Anamolies in satisfaction). Consider the two automata G_1 and G_2 in Figure 8.

Fig. 8. Two gate models G_1 and G_2 .

First, compute the set of states in G_1 that satisfy the formula $AG[down \rightarrow AF[up]]$. Now show that in model G_2 , $up \models AG[down \rightarrow AF[up]]$. Next, give a $CTL_{F,G,X}$ property that up in G_1 satisfies but up in G_2 does not satisfy.

Exercise 6 (*Examining another automaton*). Consider the automaton in Figure 9.

Fig. 9. Another automaton.

Compute the set of states that satisfies AF[q]. Now compute the set of states that satisfies EF[q].

ACM Journal Name, Vol. V, No. N, Article A, Publication date: April 2014.