Prim Rec, Decidable, Undecidable, and Beyond

William Gasarch-U of MD

Primitive Recursive

An attempt to pin down the set of functions that are computable. A function f is Primitive Recursive

1) $f\left(x_{1}, \ldots, x_{n}\right)=0 \operatorname{OR} f\left(x_{1}, \ldots, x_{n}\right)=x_{i}+c, c \in \mathrm{~N}$.
2) If $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)$ are primrec, $h\left(x_{1}, \ldots, x_{k}\right)$ is primrec, then $f\left(x_{1}, \ldots, x_{n}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$ is primrec.
3) If $g\left(x_{1}, \ldots, x_{n-1}\right)$ and $h\left(x_{1}, \ldots, x_{n+1}\right)$ are primrec then the following function is primrec.

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n-1}, 0\right) & =g\left(x_{1}, \ldots, x_{n-1}\right) \\
f\left(x_{1}, \ldots, x_{n-1}, x+1\right) & =h\left(x_{1}, \ldots, x_{n-1}, x, f\left(x_{1}, \ldots, x_{n-1}, x\right)\right)
\end{aligned}
$$

Examples

Recursion is the KEY rule. Skipping details just show that a function is recursive and its prim rec.
$A D D(x, y+1)=A D D(x, y)+1$. So ADD is primrec.
$\operatorname{MULT}(x, y+1)=A D D(\operatorname{MULT}(x, y), x)$. So MULT is primrec.
$\operatorname{EXP}(x, y+1)=\operatorname{MULT}(\operatorname{EXP}(x, y), x)$. So EXP is primrec.
$\operatorname{TOW}(x, y+1)=\operatorname{EXP}(\operatorname{TWO}(x, y), x)$. So TOW is primrec.

Less Obvious Examples

The following are primrec.
$\operatorname{MONUS}(x, y)=x-y$ if $x \geq y, 0$ otherwise.
$\operatorname{PRIME}(x)=1$ if x is prime, 0 otherwise.
KEY: Virtually any function that comes up in normal mathematics is primitive recursive.

VOTE: Anything that is computable is primitive recursive? YES or NO?

Computable but NOT Prim Rec

Use the rules to NUMBER all of the one-variable prim rec functions p_{1}, p_{2}, \ldots.
Let

$$
F(x)=p_{x}(x)+1
$$

F is NOT on the list.
This is a dumb-ass example.

Ackermann's Function

Ackermann's function is the function defined by

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

Easy: Ackermann's function is computable.
Known: Ackermann's function grows faster than any Prim Rec fn, hence Ack not Prim Rec.

Intuition: Prim Rec is a BOUNDED number of recursions. Ackerman- the number of recursions depends on the input.

Is Any Attempt Useless

The Andy Parish's together come up with a different way to pin down the computable functions:

$$
f_{1}, f_{2}, \ldots
$$

PROBLEM:
$F(x)=f_{x}(x)+1$ is NOT on the list

What do we really want?

Hidden Bad Assumption: We are insisting that all computable functions are computable on ALL inputs.

Definition: A partial function from A to B is a function whose domain is a subset of A. We might not know what that subset is.

Definition: f is a partial computable function from N to N if there exists a program M such that If x is in the domain of f then $M(x)$ halts and outputs $f(x)$ If x is NOT in the domain of f then $M(x)$ does not halt.

What do we really want?

We want to model the set of partial computable functions. We need a model of computation where it is possible to diverge- not halt.
Turing Machines!
VOTE: True or False: Everything that can be partially computed can be partially computed by a Turing Machine.

What do we really want?

We want to model the set of partial computable functions. We need a model of computation where it is possible to diverge- not halt.

Turing Machines!

VOTE: True or False: Everything that can be partially computed can be partially computed by a Turing Machine.

YES- sort of. can be partially computed is not a rigorous notion; however TM's have been shown to do everything JAVA can do, so we'll say YES. Called Church-Turing Thesis.

Notation: If $M(x)$ halts we write $M(x) \downarrow$ (converges). If $M(x)$ does not halt we write $M(x) \uparrow$ (diverges).

Example

Example of a partial function where we don't know the domain.
Let M_{1}, M_{2}, \ldots be a standard list of Turing Machines.
$f(e)=$ the number of steps $M_{e}(0)$ takes to halt, if it does.
Diverges otherwise.
(SEEMS like we can't determine the domain, and we can't, but have not proven that yet.)

Are there any noncomputable sets?

Let M_{1}, M_{2}, \ldots be a standard list of Turing Machines.
Let

$$
H A L T=\left\{(x, y) \mid M_{x}(y) \downarrow\right\}
$$

Claim: HALT is NOT decidable.

Proof

Assume that HALT is decidable. We build a machine that causes a contradiction.
Let HALT be decidable by machine M. Note that $M(x, y)$ always converges- could say YES or NO. Build the following:

1. $\operatorname{Input}(x)$
2. Run $M(x, x)$. If says YES (so $\left.M_{x}(x) \downarrow\right)$ then DIVERGE. If says NO then CONVERGE.

Call THIS machine M_{e}. Is $(e, e) \in H A L T$? DO REST ON BOARD.

