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Primitive Recursive

An attempt to pin down the set of functions that are computable.
A function f is Primitive Recursive

1) f (x1, . . . , xn) = 0 OR f (x1, . . . , xn) = xi + c , c ∈ N.

2) If g1(x1, . . . , xn), . . ., gk(x1, . . . , xn) are primrec, h(x1, . . . , xk) is
primrec, then f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))
is primrec.

3) If g(x1, . . . , xn−1) and h(x1, . . . , xn+1) are primrec then the
following function is primrec.

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1, x + 1) = h(x1, . . . , xn−1, x , f (x1, . . . , xn−1, x))
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Examples

Recursion is the KEY rule. Skipping details just show that a
function is recursive and its prim rec.

ADD(x , y + 1) = ADD(x , y) + 1. So ADD is primrec.

MULT (x , y + 1) = ADD(MULT (x , y), x). So MULT is primrec.

EXP(x , y + 1) = MULT (EXP(x , y), x). So EXP is primrec.

TOW (x , y + 1) = EXP(TWO(x , y), x). So TOW is primrec.
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Less Obvious Examples

The following are primrec.

MONUS(x , y) = x − y if x ≥ y , 0 otherwise.

PRIME (x) = 1 if x is prime, 0 otherwise.

KEY: Virtually any function that comes up in normal mathematics
is primitive recursive.

VOTE: Anything that is computable is primitive recursive? YES or
NO?

William Gasarch-U of MD Prim Rec, Decidable, Undecidable, and Beyond



Computable but NOT Prim Rec

Use the rules to NUMBER all of the one-variable prim rec
functions p1, p2, . . ..
Let

F (x) = px(x) + 1

F is NOT on the list.
This is a dumb-ass example.
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Ackermann’s Function

Ackermann’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

Easy: Ackermann’s function is computable.

Known: Ackermann’s function grows faster than any Prim Rec fn,
hence Ack not Prim Rec.

Intuition: Prim Rec is a BOUNDED number of recursions.
Ackerman— the number of recursions depends on the input.
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Is Any Attempt Useless

The Andy Parish’s together come up with a different way to pin
down the computable functions:

f1, f2, . . .

PROBLEM:
F (x) = fx(x) + 1 is NOT on the list
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What do we really want?

Hidden Bad Assumption: We are insisting that all computable
functions are computable on ALL inputs.

Definition: A partial function from A to B is a function whose
domain is a subset of A. We might not know what that subset is.

Definition: f is a partial computable function from N to N if there
exists a program M such that
If x is in the domain of f then M(x) halts and outputs f (x)
If x is NOT in the domain of f then M(x) does not halt.
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What do we really want?

We want to model the set of partial computable functions. We
need a model of computation where it is possible to diverge- not
halt.
Turing Machines!

VOTE: True or False: Everything that can be partially computed
can be partially computed by a Turing Machine.

YES- sort of. can be partially computed is not a rigorous notion;
however TM’s have been shown to do everything JAVA can do, so
we’ll say YES. Called Church-Turing Thesis.

Notation: If M(x) halts we write M(x) ↓ (converges). If M(x)
does not halt we write M(x) ↑ (diverges).
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Example

Example of a partial function where we don’t know the domain.

Let M1,M2, . . . be a standard list of Turing Machines.

f (e) = the number of steps Me(0) takes to halt, if it does.
Diverges otherwise.

(SEEMS like we can’t determine the domain, and we can’t, but
have not proven that yet.)
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Are there any noncomputable sets?

Let M1,M2, . . . be a standard list of Turing Machines.

Let
HALT = {(x , y) | Mx(y) ↓}

Claim: HALT is NOT decidable.
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Proof

Assume that HALT is decidable. We build a machine that causes a
contradiction.
Let HALT be decidable by machine M. Note that M(x , y) always
converges- could say YES or NO. Build the following:

1. Input(x)

2. Run M(x , x). If says YES (so Mx(x) ↓) then DIVERGE. If
says NO then CONVERGE.

Call THIS machine Me . Is (e, e) ∈ HALT?
DO REST ON BOARD.
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