## Goodstein Sequence starting at 4

## Exposition by William Gasarch

Start with a number $a_{2}$ written in base 2.
Take the number $a_{b}$ written in base b , replace the $b$ 's with $(b+1)$ 's and then subtract 1 .

Here are the first few starting at $a_{2}=4$.
There WILL be some $b$ such that $a_{b}=0$.
QUESTION: Try to estimate the first $b$ such that $a_{b}=0$.
$a_{2}=2^{2}=4$.
$a_{3}=3^{3}-1=2 \times 3^{2}+2 \times 3^{1}+2 \times 3^{0}=26$
$a_{4}=2 \times 4^{2}+2 \times 4^{1}+2 \times 4^{0}-1=2 \times 4^{2}+2 \times 4^{1}+1 \times 4^{0}=41$
$a_{5}=2 \times 5^{2}+2 \times 5^{1}+1 \times 5^{0}-1=2 \times 5^{2}+2 \times 5^{1}=60$
$a_{6}=2 \times 6^{2}+2 \times 6^{1}-1=83$

