HW 6 CMSC 452. Morally DUE March 11

- 1. (0 points) What is your name? Write it clearly. Staple your HW. When is the midterm? Where is the midterm? When is the Final?
- 2. (60 points) RECALL the following formal statement of the Pumping Theorem:

If L is regular then there exists N such that, for all $w \in L$, $|w| \ge N$, there exist $x, y, z, y \ne e$, such that (1) w = xyz and (2) $(\forall i)[xy^i z \in L]$.

In this problem you will prove a variant of this. Prove the following:

If L is regular then there exists N_1 and N_2 such that, for all $w \in L$, $|w| \geq N_1$, there exist $x, y, z, y \neq e$, such that (1) w = xyz and (2) $|y| \leq N_2$ and (3) $(\forall i)[xy^i z \in L]$.

- 3. (40 points) Let $n \ge 2$. Let A_1, A_2, \ldots, A_n be countable
 - (a) Show that $A_1 \cup \cdots \cup A_n$ is countable.
 - (b) Show that $A_1 \times \cdots \times A_n$ is countable.