1. (0 points) What is your name? Write it clearly. Staple your HW. When is the midterm? Where is the midterm? When is the Final?
2. (60 points) RECALL the following formal statement of the Pumping Theorem:
If L is regular then there exists N such that, for all $w \in L,|w| \geq N$, there exist $x, y, z, y \neq e$, such that (1) $w=x y z$ and (2) ($\forall i)\left[x y^{i} z \in L\right]$.
In this problem you will prove a variant of this. Prove the following: If L is regular then there exists N_{1} and N_{2} such that, for all $w \in L$, $|w| \geq N_{1}$, there exist $x, y, z, y \neq e$, such that (1) $w=x y z$ and (2) $|y| \leq N_{2}$ and (3) ($\left.\forall i\right)\left[x y^{i} z \in L\right]$.
3. (40 points) Let $n \geq 2$. Let $A_{1}, A_{2}, \ldots, A_{n}$ be countable
(a) Show that $A_{1} \cup \cdots \cup A_{n}$ is countable.
(b) Show that $A_{1} \times \cdots \times A_{n}$ is countable.
