HW 5 CMSC 452. Morally DUE Mar 7 THIS HOMEWORK IS THREE PAGES

- 1. (5 points) What is your name? Write it clearly. When is the midterm? Write that clearly too. Staple your HW. WHAT IS THE DAY/TIME OF THE MIDTERM? (HINT: The Midterm is March 30 IN CLASS at 11:00.)
- 2. (40 points)
 - (a) (Use our usual convention for pairs of numbers, so the alphabet is $\{00, 01, 10, 11\}$, which we usually write vertically.) Write a DFA for $\{(x, y) : x = y + 3\}$. Label each state
 - vince a DFA for $\{(x, y) : x y + 5\}$. Labe
 - A for accept,
 - R for reject, or
 - B for Bad Format.

(NOTE - the comma after "reject" is called an Oxford comma.)

- (b) Write a DFA for $\{(x, y) : x \neq y + 3\}$. Label each state
 - A for accept,
 - R for reject, or
 - B for Bad Format.

3. (25 points) $A \subseteq \{0, 1\}^{\omega}$ is *D*-regular if there is a DFA $M = (Q, \Sigma, \delta, s, F)$ such that:

 $x \in A \rightarrow$ if you run M on x you hit a state in F infinitely often

- $x \notin A \rightarrow$ if you run M on x you DO NOT hit a state in F infinitely often
- (a) Write a D-DFA for

 $L_1 = \{ X : X \text{ is infinite } \}.$

- (b) Take the *D*-DFA you wrote for L_1 in part a. Swap the final and non-final states. Let L'_1 be the language (subset of $\{0, 1\}^{\omega}$) that your new automta accepts. Describe L'_1 . Is it $\overline{L_1}$ (also called the *compliment* of L_1 or $\{0, 1\}^{\omega} - L_1$)?
- (c) Write a D-DFA for

 $\{X : X \text{ is infinite and } \mathsf{N} - X \text{ is infinite } \}.$

(d) Write an D-DFA for

 $\{X : \text{ there is an infinite number of } x \text{ such that } x \in X \text{ and } x + 1 \in X\}$

(e) Show this is NO *D*-DFA for $\{X : X \text{ is finite}\}$.

- 4. (35 points) A *J*-automata M is a tuple $(Q, \Sigma, \delta, s, F)$ such that
 - Q is a set of states just like in a DFA.
 - Σ is an alphabet just like in a DFA.
 - $\delta: Q \times \Sigma \to Q$ just like a DFA.
 - $s \in S$, the start state just like a DFA.
 - F is a NOT a subset of Q. F is a set of subsets of F. For example, if $Q = \{1, 2, 3, 4, 5, 6\}$ F could be $\{\{1, 2, 5\}, \{1, 5\}, \{2, 3, 6\}\}$

Let $x \in \{0,1\}^{\omega}$. We say that *J*-automta *A* accepts *x* if, when you run *x* through *A*, the set of states that are visiting infinitely often is a set in *F*. For example, in the above example, if the set of states visiting infinitely often was $\{1,2,5\}$ then ACCEPT, but if its $\{1,2\}$ then REJECT.

A subset of $\{0,1\}^{\omega}$ which is accepted by an *J*-automta is called *J*-regular.

- (a) (0 points) How would you complement an *J*-regular set?
- (b) (7 points) Show that if L is J-regular then \overline{L} is J-regular.
- (c) (7 points) Give a *J*-automata for $\{X : X \text{ is infinite }\}$.
- (d) (7 points) Give a *J*-automata for $\{X : X \text{ is finite }\}$.
- (e) (7 points) Give a *J*-automata for $\{X : X \text{ is infinite and } N X \text{ is infinite}\}$.
- (f) (7 points) Let $T = \{x : x \equiv 0 \pmod{3}\}$. Give a *J*-automata for $\{X : X \cap T \text{ is infinite}\}$.