THROUGHOUT THIS HW YOU MAY ASSUME:
3-COL is NP-complete
SAT is NP-complete.

1. (0 points BUT if you don’t do it you’ll get a 0 on the entire HW) What is your name? Write it clearly. Staple the HW.

2. (25 points) Let \(\text{COL}_k = \{ G \mid \text{G is } k\text{-colorable} \} \)

(a) Show that \(\text{COL}_3 \leq \text{COL}_4 \).
(b) Show that \(\text{COL}_k \leq \text{COL}_{k+1} \).
(c) Show that \(\text{COL}_4 \leq \text{COL}_3 \).

SOLUTION TO PROBLEM TWO

2a) Let \(G \) be a graph. let \(G' \) be \(G \) with one more node that is connected to ALL vertices
\(G \) is 3-col IFF \(G' \) is 4-col.

2b) Similarly to 2a

2c) This is a dirty, stinking trick. \(\text{COL}_4 \in NP \). \(\text{COL}_3 \) is NP-Complete. Hence \(\text{COL}_4 \leq \text{COL}_3 \).

IF we do this more carefully to try to really GET the reduction here is what you get:

We know that \(\text{COL}_4 \leq \text{SAT} \) since SAT is NP-complete
We know that \(\text{SAT} \leq \text{COL}_3 \) since \(\text{COL}_3 \) is NP-complete.
So \(\text{COL}_4 \leq \text{SAT} \leq \text{COL}_3 \).

That reduction is INSANE! Is there a SANE reduction. Yes - in a paper of mine.
3. (25 points) Let

\[\text{CLIQ}_1 = \{ G : \text{G has n vertices and has a clique of size } n/3 \} \]

\[\text{CLIQ}_2 = \{ G : \text{G has n vertices and has a clique of size } n/2 \} \]

(Ignore divisibility issues for 2 and 3 dividing \(n \).)

(a) Show that \(\text{CLIQ}_1 \leq \text{CLIQ}_2 \)

(b) Is either problem NP-complete? (HINT - look at the proof that \(\text{CLIQ} \) is NP-complete carefully!)

SOLUTION TO PROBLEM THREE

3a) Let \(G_1 \oplus G_2 \) be the graph that is \(G_1 \cup G_2 \) and EVERY vertex in \(G_1 \) has an edge to EVERY vertex of \(G_2 \).

Let \(G \) be a graph. We want to map it to \(G \oplus K_m \) for some \(m \) we need to determine.

If \(G \) has \(n \) vertices and a clique of size \(n/3 \) then

\(G \cup K_m \) has \(n + m \) vertices and a clique of size \(n/3 + m \). So we need

\[
\frac{n}{3} + m = \left(\frac{1}{2}\right)(n + m)
\]

\[
\frac{n}{3} + m = \frac{n}{2} + \frac{m}{2}
\]

\[
\frac{m}{2} = \frac{n}{6}
\]

\[
m = \frac{n}{3}.
\]

SO \(G' = G \oplus K_{n/3} \).

Then \(G \) has a clique of size \(n/3 \) IFF \(G' \) has a clique of size \((1/2)(n+n/3) \).

3b) The proof that 3-SAT \(\leq \text{CLIQUE} \) produces a \(G \) on \(3n \) vertices (some \(n \)) where the \(3n \) vertices are in \(n \) clumps of 3. We want a vertex with one vertex per clump, so a clique of size \(n/3 \). HENCE \(\text{CLIQ1} \) is NP-complete. Since \(\text{CLIQ1} \leq \text{CLIQ2} \), \(\text{CLIQ2} \) is NP-complete.

4. (25 points) A formula is in \(\text{DNF FORM} \) if it is of the form \(D_1 \lor \cdots \lor D_m \) where each \(D_i \) is the AND of literals.

\(\text{DNF} - \text{SAT} \) is the set of DNF-formulas that are SATISFIABLE.

Show either, \(\text{DNF} - \text{SAT} \) is NP-complete, or that \(\text{DNF} - \text{SAT} \) is in \(P \).
SOLUTION TO PROBLEM FIVE

DNF-SAT is in P.

Given $D_1 \vee \cdots \vee D_m$ ALL you need to do is make ALL of the literals in some D_i true. This is easy - if there is some D_i where you DO NOT have both a variable and its complement then you can make that D_i true and you’re done. If ALL of the D_i’s have a var and its compliment then CANNOT satisfy.

5. (25 points) Below is an algorithm for Vertex Cover of size k which has some [FILL THIS IN] in it. Your job: You guessed it!

There is a global variable, I, in this recursive procedure.

$VC(G, k)$

(a) Remove all isolated vertices.

(b) If there is any vertex v of degree $\geq k + 1$ then v MUST go into the vertex cover because [FILL THIS IN]. So $I = I \cup \{v\}$. If $|I| \geq k + 1$ then output NO and stop. Else let $G' = G - \{v\}$ and call $VC(G', k - 1)$.

(c) If there are no vertices of degree $\geq k + 1$ then EVERY vertex is of degree $\leq k$. If there is a VC of size k then there are at most k^2 edges because [FILL THIS IN]. Hence there are at most $k^2 - 1$ vertices. By brute force you can solve this problem in time [FILL THIS IN].

For our analysis we will assume that there is an algorithm that finds vertices of degree $\geq BLAH$ and removes them in time $O(n)$. We can just use n and later make the entire algorithm an O-of.

The run time of this algorithm is [FILL THIS IN] because [FILL THIS IN].

SOLUTION TO PROBLEM FIVE

$VC(G, k)$

(a) Remove all isolated vertices.

(b) If there is any vertex v of degree $\geq k + 1$ then v MUST go into the vertex cover because if v does not go in then there are $k + 1$ edges that must be dealt with by putting into the VC the other endpoint-
that's $k+1$ vertices, too many! So $I = I \cup \{v\}$. If $|I| \geq k+1$ then output NO and stop. Else let $G' = G - \{v\}$ and call $VC(G', k-1)$.

(c) If there are no vertices of degree $\geq k + 1$ then EVERY vertex is of degree $\leq k$. If there is a VC of size k then there are at most k^2 edges because we can count the edges as such: map every vertex in the VC to the set of edges it covers. There are $\leq k$ vertices in the VC, and each one covers $\leq k$ edges. So $\leq k^2$ edges. Hence there are at most $k^2 - 1$ vertices. By brute force you can solve this problem in time $(\binom{k^2-1}{k}) \sim k^{2k}$.

For our analysis we will assume that there is an algorithm that finds vertices of degree $\geq BLAH$ and removes them in time $O(n)$.

Here is the analysis: Let $T(n, k)$ be the run time for n vertices, seeking VC of size k. Then

$$T(n, k) \leq n + \max\{T(n - 1, k - 1), k^{2k}\}$$

CLAIM: $T(n, k) \leq kn + k^{2k}$.

One can prove this by induction.