
HW 12 CMSC 452. Morally Due May 9
THIS HW IS TWO PAGES!

SOLUTIONS

THROUGHOUT THIS HW YOU MAY ASSUME:
3-COL is NP-complete
SAT is NP-complete.

1. (0 points BUT if you don’t do it you’ll get a 0 on the entire HW) What
is your name? Write it clearly. Staple the HW.

2. (25 points) Let

COLk = {G | G is k-colorable }

(a) Show that COL3 ≤ COL4.

(b) Show that COLk ≤ COLk+1.

(c) Show that COL4 ≤ COL3.

SOLUTION TO PROBLEM TWO

2a) Let G be a graph. let G′ be G with one more node that is connected
to ALL vertices

G is 3-col IFF G′ is 4-col.

2b) Similarly to 2a

2c) This is a dirty, stinking trick. COL4 ∈ NP . COL3 is NP-Complete.
Hence COL4 ≤ COL3.

IF we do this more carefully to try to really GET the reduction here is
what you get:

We know that COL4 ≤ SAT since SAT is NP-complete

We know that SAT ≤ COL3 since COL3 is NP-complete.

So COL4 ≤ SAT ≤ COL3.

That reduction is INSANE! Is there a SANE reduction. Yes - in a
paper of mine.
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3. (25 points) Let

CLIQ1 = {G : G has n vertices and has a clique of size n/3}

CLIQ2 = {G : G has n vertices and has a clique of size n/2}

(Ignore divisibility issues for 2 and 3 dividing n.)

(a) Show that CLIQ1 ≤ CLIQ2

(b) Is either problem NP-complete? (HINT - look at the proof that
CLIQ is NP-complete carefully!)

SOLUTION TO PROBLEM THREE

3a) Let G1 ⊕ G2 be the graph that is G1 ∪ G2 and EVERY vertex in
G1 has an edge to EVERY vertex of G2.

Let G be a graph. We want to map it to G⊕Km for some m we need
to determine.

If G has n vertices and a clique of size n/3 then

G ∪Km has n + m vertices and a clique of size n/3 + m. So we need

n/3 + m = (1/2)(n + m)

n/3 + m = n/2 + m/2

m/2 = n/6

m = n/3.

SO G′ = G⊕Kn/3.

Then G has a clique of size n/3 IFF G′ has a clique of size (1/2)(n+n/3).

3b) The proof that 3-SAT ≤ CLIQUE produces a G on 3n vertices
(some n) where the 3n vertices are in n clumps of 3. We want a vertex
with one vertex per clump, so a clique of size n/3. HENCE CLIQ1 is
NP-complete. Since CLIQ1 ≤ CLIQ2, CLIQ2 is NP-complete.

4. (25 points) A formula is in DNF FORM of it is of the form D1∨· · ·∨Dm

where each Di is the AND of literals.

DNF − SAT is the set of DNF-formulas that are SATISFIABLE.

Show either, DNF − SAT is NP-complete, or that DNF − SAT is in
P.
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SOLUTION TO PROBLEM FIVE

DNF-SAT is in P.

Given D1 ∨ · · · ∨Dm ALL you need to do is make ALL of the literals
in some Di true. This is easy - if there is some Di where you DO NOT
have both a variable and its complement then you can make that Di

true and you’re done. If ALL of the Di’s have a var and its compliment
then CANNOT satisfy.

5. (25 points) Below is an algorithm for Vertex Cover of size k which has
some [FILL THIS IN] in it. Your job: You guessed it!

There is a global variable, I, in this recursive procedure.

V C(G, k)

(a) Remove all isolated vertices.

(b) If there is any vertex v of degree ≥ k + 1 then v MUST go into
the vertex cover because [FILL THIS IN]. So I = I ∪ {v}. If
|I| ≥ k + 1 then output NO and stop. Else let G′ = G− {v} and
call V C(G′, k − 1).

(c) If there are no vertices of degree ≥ k + 1 then EVERY vertex is
of degree ≤ k. If there is a VC of size k then there are at most
k2 edges because [FILL THIS IN]. Hence there are at most k2− 1
vertices. By brute force you can solve this problem in time [FILL
THIS IN].

For our analysis we will assume that there is an algorithm that finds
vertices of degree ≥ BLAH and removes them in time O(n). We can
just use n and later make the entire algorithm an O-of.

The run time of this algorithm is [FILL THIS IN] because [FILL THIS
IN].

SOLUTION TO PROBLEM FIVE

V C(G, k)

(a) Remove all isolated vertices.

(b) If there is any vertex v of degree ≥ k+1 then v MUST go into the
vertex cover because if v does not go in then there are k + 1 edges
that must be dealt with by putting into the VC the other endpoint-
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that’s k+1 vertices, too many!. So I = I∪{v}. If |I| ≥ k+1 then
output NO and stop. Else let G′ = G−{v} and call V C(G′, k−1).

(c) If there are no vertices of degree ≥ k + 1 then EVERY vertex is
of degree ≤ k. If there is a VC of size k then there are at most k2

edges because we can count the edges as such: map every vertex
in the VC to the set of edges it covers. There are ≤ k vertices in
the VC, and each one covers ≤ k edges. So ≤ k2 edges. Hence
there are at most k2 − 1 vertices. By brute force you can solve
this problem in time

(
k2−1
k

)
∼ k2k.

For our analysis we will assume that there is an algorithm that finds
vertices of degree ≥ BLAH and removes them in time O(n).

Here is the analysis: Let T (n, k) be the run time for n vertices, seeking
VC of size k. Then

T (n, k) ≤ n + max{T (n− 1, k − 1), k2k}

CLAIM: T (n, k) ≤ kn + k2k.

One can prove this by induction.
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