Closure of Regular Langs Under Union, Intersection, Complementation, and Projection
Exposition by William Gasarch

1 Introduction

We give the constructions that show sketch the proof that all if Ly and Lo are regular and L1 N Lo,
Ly U Ly, L, and proj(L) (which we will define) are regular.

Def 1.1 A DFA is a tuple (@, %, 4, s, F') where § : Q x ¥ — Q.

We define running a DFA M on a string x in the obvious way. If the DFA ends in a state in F
then x is accepted. Otherwise its rejected.

2 The Construction for Intersection
Theorem 2.1 If L1 and Ly are reqular then L1 N Lo is reqular.

Proof:
Let My = (Q1,%, 61, 81, F1) be the DFA for Ly. Let My = (Q2, X, d2, s2, F) be the DFA for L.
We define the DFA for Ly N Ly. Let M = (Q1 x Q2,%,9, (s1,s2), F1 X Fy) where 6 is defines by,
for (q1,q2) € Q1 X Q2 and o € 3,

6((q1,q2),0) = (61(q1,0), 62(q2, 7).

The intuition is that the DFA M runs M; and Ms at the same time. If both end up in I} X Fy
then both M7 and Ms accepted. |

3 The Construction for Union
Theorem 3.1 If Ly and Ly are regular then L1 U Ly is reqular.

Proof:
Let My = (Q1,%, 01, s1, F1) be the DFA for L. Let My = (Q2, X, 02, S2, F2) be the DFA for Lo.
We define the DFA for L U Ly. Let M = (Q1 X Q2,%,9, (s1,52), F1 X Q2 U Q1 X Fy) where § is
defines by, for (¢1,¢2) € Q1 X Q2 and o € X,

6((q1,q2),0) = (61(q1,0), 62(q2, 7))

The intuition is that the DFA M runs M; and Ms at the same time. If M7 ends up in F; then
we accept (independent of what My does), and if My ends up in F, then we accept (independent
of what M; does). 1



4 The Construction for Complementation
Theorem 4.1 If L is reqular then L is reqular.

Proof:
Let M = (Q,%,4,s, F) be the DFA for L.
We define the DFA for L. Let M' = (Q,%,5,s,Q — F) (recall that Q— F = {q | ¢ € QA q & F}.
The intuition is that the DFA M’ runs M but does the opposite when it comes to accepting.

5 The Construction for Complimentation
To Compliment a DFA you say

My DFA, you lovely you look.
6 The Construction for Nondeterminism
Recall the definition of an NDFA:

Def 6.1 An NDFA is a tuple (Q, %, A, s, F) where A : Q x (X Ue) — 29, (Recall that 29 is the
powerset of Q.

We DO NOT define running an NDFA M on a string z. Instead we say that an NDFA accepts
z if SOME way of running the machine ends up in a state in F.

Theorem 6.2 If L is accepted by an NDFA then there exists a DFA such that accepts L.

Proof: Let M = (Q,%,A,s, F) be the NDFA for L.
We define the DFA for L. Let M’ = (29,%,6, s, F) where for A € 29 and 0 € X,

d(A,0)= U A(etqe, o)
qeA

(The e and e’ are strings of the empty string.)

F={A|ANF £ 0}

The intuition is that the DFA M’ runs ALL possibilities for M. If SOME possibility ends up
accepting, then accept. |



7 Closure under Projection

Notation 7.1 LetX = {0,1}". Note that each element of X is itself a string of n bits. If z € £*
then proj(z) is what you get by taking each symbol in x and chopping off the last bit. So if
x € ({0,1}")* then proj(z) € ({0,1}*1)*. If L C ({0,1}")* then

proj(L) = {proj(z) | x € L}.

Theorem 7.2 If L is reqular than proj(L) is regular.

Proof: Let M = (Q,({0,1}"),4,s, F') be the DFA for L.
We define an NDFA for L. Let M’ = (Q,{0,1}" * A,s,F) . For ¢ € Q and o € {0,1}*!

A(g,0) ={d(q,00),0(q,01)}.



