DETERMINING IF X = Y

Bill Gasarch- U.of MD-College Park gasarch@cs.umd.edu

< ∃ >

Bill Gasarch- U.of MD-College Park gasarch@cs.umd.edu DETERMINING IF X = Y

- 1. Alice has x, Bob has y.
- 2. They want to see if x = y communicating as few bits as possible.

A (1) > (1)

3. We call this problem EQ.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice sends $a_1 \cdots a_n$ to Bob (*n* bits).
- 3. Bob compares $a_1 \cdots a_n$ to $b_1 \cdots b_n$. If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

- 1. EQ **REQUIRES** $\sim n$ bits.
- 2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.
- 3. Can do EQ with $\sim \log n$ bits, but no better.
- 4. Stewart/Colbert in 2016.

▲ @ ▶ < ≥ ▶</p>

EQ **REQUIRES** n + 1 bits. So, for Alice and Bob to determine if two *n*-bit strings are equal **REQUIRES** n + 1 bits. (Proven by Andrew Yao in 1979.)

・ロト ・回ト・ ・ ヨト

Bill Gasarch- U.of MD-College Park gasarch@cs.umd.edu DETERMINING IF X = Y

What if we

- 1. Allow Alice and Bob to flip coins, and
- 2. allow a probability of error $\leq \frac{1}{n}$.

・ロト ・回ト ・ヨト

< ∃⇒

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice rand $S \subseteq \{1, \ldots, n\}$, |S| = 10.
- 3. For $i \in S$ Alice sends (i, a_i) . 10 log *n* bits.
- 4. For each (i, a_i) that Bob checks " $a_i = b_i$?".
- 5. If always YES, Bob sends 1, else sends 0.

- 1. Protocol is $\sim \log n$ bits. **GOOD!**
- 2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. **BAD!**
- 3. Does well if input is unif chosen. GOOD!
- 4. Not really what we want. BAD!
- 5. KEY PROBLEM: Protocol too local.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$. Sends $PAR(a_1 + \cdots + a_n) = 1$ if sum is ODD Sends $PAR(a_1 + \cdots + a_n) = 0$ if sum is EVEN.
- 3. Bob computes $PAR(b_1 + \dots + b_n)$. $PAR(a_1 + \dots + a_n) = PARITY(b_1 + \dots + b_n)$ then 1 (x = y) $PAR(a_1 + \dots + a_n) = PARITY(b_1 + \dots + b_n)$ then 0 $(x \neq y)$

- 4 周 ト 4 ヨ ト 4 ヨ ト

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**
- 3. Protocol will be wrong alot. BAD.
- 4. Speculation: Can we use $a_n + \cdots + a_1$ remainder when divided by 3? 4? 5?

 $a \equiv b \pmod{c}$ means

- 1. a/c and b/c have same remainder.
- 2. $b \in \{0, 1, \ldots, c-1\}.$

EXAMPLES:

- 1. Any odd number is $\equiv 1 \pmod{2}$.
- 2. $100 \equiv 9 \pmod{7}$ since $100 = 7 \times 13 + 9$

 $Z_m = \{0, 1, \dots, m-1\}$ and all of the operations are mod m.

- 1. Everyday Example: Clock Arithmetic
- 2. For all *m* you can do +, -, \times in Z_m .
- 3. For *m* prime you can also do \div in Z_m .

(1日) (1日)

- 1. If *f* is a polynomial **over the reals** of degree *d* then *f* has at most *d* roots.
- 2. If f is a polynomial **over the complex numbers** of degree d then f has at most d roots. (d if you count multiplicities.)
- Let p be a prime. If f is a polynomial over Z_p of degree d then f has at most d roots.

- 1. Alice has $a_0a_1 \cdots a_{n-1}$. Bob has $b_0b_1 \cdots b_{n-1}$. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 2. Alice picks $z \in \{1, ..., p-1\}$ RAND. Alice computes, mod p, $y = a_0 + a_1z + a_2z^2 + \cdots + a_{n-1}z^{n-1}$ Alice sends (z, y) to Bob.
- 3. Bob computes, mod p, $y' = b_0 + b_1 z + b_2 z^2 + \dots + b_{n-1} z^{n-1}$ If y = y' then send 1, else send 0.

(日本) (日本)

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. **WHY:** If there is an error then z is a root of the poly a(x) - b(x)There are only n such roots so the probability of this is very low.
- 3. This result is due to Melhorn and Schmidt, 1982.

COMMUNICATION COMPLEXITY

by Kushilevitz and Nisan.

Bill Gasarch- U.of MD-College Park gasarch@cs.umd.edu DETERMINING IF X = Y

<ロ> (四) (四) (日) (日) (日)