
The Roots Hierarchy

Exposition by William Gasarch and Erik Metz

1 Introduction

The main proof in this note is from Problems from the Book by Dospinescu and Andreescu.

We want to classify real numbers in terms of their complexity.

Def 1.1 Let d ∈ N.

1. Zd[x] is the set of polynomials of degree d over Z (the integers).

2. rootsd is the set of roots of polynomials in Zd[x]. Note that roots1 = Q.

Clearly roots1 ⊆ roots2 ⊆ roots3 ⊆ · · ·

We want to show that roots1 ⊂ roots2 ⊂ roots3 ⊂ · · ·

2 The Hierarchy is Proper

We show that roots3 ⊂ roots4. All of the ideas to show rootsd−1 ⊂ rootsd are contained in

the proof. The main method for the proof is taken from chapter 9 of Problems from the Book

by Titu Andreescu and Gabriel Dospinescu.

Theorem 2.1 roots3 ⊂ roots4.

Proof: Clearly roots3 ⊆ roots4. We show that 21/4 ∈ roots4 − roots3 which implies

roots3 ⊂ roots4.

Clearly 21/4 is a root of x4 − 2 = 0 and hence 21/4 ∈ roots4. We show that 21/4 /∈ roots3

Assume, by way of contradiction, that there exists a0, a1, a2, a3 ∈ Z such that

1



a3(2
1/4)3 + a2(2

1/4)2 + a1(2
1/4) + a0 = 0

which is

a3 × 23/4 + a2 × 21/2 + a1 × 21/4 + a0 × 1 = 0

We assume the following about (a3, a2, a1, a0): They are not all even. If they are then

divide each one by 2 to get a smaller poly over Z and use that.

Multiply this equation by 1, 21/4, 21/2, 23/4 to get

a3 × 23/4 + a2 × 21/2 + a1 × 21/4 + a0 × 1 = 0

a2 × 23/4 + a1 × 21/2 + a0 × 21/4 + 2a3 × 1 = 0

a1 × 23/4 + a0 × 21/2 + 2a3 × 21/4 + 2a2 × 1 = 0

a0 × 23/4 + 2a3 × 21/2 + 2a2 × 21/4 + 2a1 × 1 = 0

We rewrite this as a matrix times a vector being the zero vector:



a3 a2 a1 a0

a2 a1 a0 2a3

a1 a0 2a3 2a2

a0 2a3 2a2 2a1





23/4

21/2

21/4

1


=



0

0

0

0
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Let

A =



a3 a2 a1 a0

a2 a1 a0 2a3

a1 a0 2a3 2a2

a0 2a3 2a2 2a1


The matrix above can be multiplied by a non-zero vector and get zero. Hence the matrix

has det 0. Hence the det is 0 MOD 2.

A (mod 2) =



a3 a2 a1 a0

a2 a1 a0 0

a1 a0 0 0

a0 0 0 0


By the column expansion definition of det, applied to the last row the det (mod 2) is a40,

Hence a40 ≡ 0 (mod 2), so a0 ≡ 0 (mod 2). We rewrite A:

A =



a3 a2 a1 2b0

a2 a1 2b0 2a3

a1 2b0 2a3 2a2

2b0 2a3 2a2 2a1


Since this matrix had det 0, so does the matrix when I divide the last column by 2. Hence

this matrix has det 0:

B =



a3 a2 a1 b0

a2 a1 2b0 a3

a1 2b0 2a3 a2

2b0 2a3 2a2 a1
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Take this matrix mod 2 to get:

B (mod 2) =



a3 a2 a1 b0

a2 a1 0 a3

a1 0 0 a2

0 0 0 a1


If you expand the det of B (mod 2) on the last row you get a41. Hence a41 ≡ 0 (mod 2),

so a1 ≡ 0 (mod 2). Hence a1 = 2b1. We rewrite B:

B =



a3 a2 2b1 b0

a2 2b1 2b0 a3

2b1 2b0 2a3 a2

2b0 2a3 2a2 2b1


We divide the third column by 2:

C =



a3 a2 b1 b0

a2 2b1 b0 a3

2b1 2b0 a3 a2

2b0 2a3 a2 2b1


Hence

C (mod 2) =



a3 a2 b1 b0

a2 0 b0 a3

0 0 a3 a2

0 0 a2 0
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By the column expansion definition of det, applied to the last row, a2 is even. Let

a2 = 2b2. If a matrix has det 0 and you divide a column by (say) 2 then the matrix still has

det 0. Divide the second column by 2, and replace all a2 by 2b2, to get:

D =



a3 b2 b1 b0

2b2 b1 b0 a3

2b1 b0 a3 2b2

2b0 a3 2b2 2b1



D (mod 2) =



a3 b2 b1 b0

0 b1 b0 a3

0 b0 a3 0

0 a3 0 0


By the column expansion definition of det, applied to the last column, a3 is even.

We now have that a3, a2, a1, a0 are all even. This contradicts are assumption on (a3, a2, a1, a0).
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