OPTIONAL PROJECT TO AVOID GETTING A D

THIS DOCUMENT IS TWO PAGES LONG

If you do this project AND end up with an F or D in the course then I will grade it and MAY use your grade to BUMP your grade up (from an F to a D-, from a D to a C-). Throughout this document “prove” means “give a construction and discuss why it works.” What you hand in must be TYPED or VERY GOOD HANDWRITING.

DUE the LAST DAY of class. Absolute Deadline.

HINT: START early. Feel free to get help from me or the TA.

CONVENTION; You can’t say ‘by theorem BLAH’ For example, if I as you to show that

If L is regular than LL is regular

You CANNOT say

Because regular langs are closed under concatenation

1. (0 points but you have to answer) What is your name? Write it clearly.

2. Let L be regular. Prove or Disprove or state that it is unknown to science. (You may use the equivalence of DFA,’s NFA’s, and Regular Expressions).
 (a) LL is regular.
 (b) L^* is regular.

3. Let L be in P. Prove or Disprove or state that it is unknown to science.
 (a) LL is in P.
 (b) L^* is in P.

4. Let L be in NP. Prove or Disprove or state that it is unknown to science.
 (a) LL is in NP.
 (b) L^* is in NP.

THERE IS A SECOND PAGE
5. Let L be decidable. Prove or Disprove or state that it is unknown to science.

 (a) LL is decidable.
 (b) L^* is decidable.

6. For this problem you may assume regular languages are closed under UNION, INTERSECTION, COMPLEMENTATION, and PROJECTION. Describe carefully an ALgorithm that will, on input a SENTENCE ϕ in WS1S, output (1) TRUE if ϕ is TRUE, and (2) FALSE if ϕ is FALSE. (Note that since ϕ is a sentence it is either true or false.)

7. (a) Describe the reduction of SAT to IND SET. That is, describe how you would take a formula ϕ (we can assume its in CNF form) and from it get a graph G and a number k such that $\phi \in SAT$ iff $(G, k) \in IND SET$

 (b) Use the answer to part 1 to find a graph G and a number k such that

 $$(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \in SAT$$

 iff

 $$(G, k) \in IND SET.$$