Homework 4 Morally Due Feb 26
THIS HOMEWORK IS TWO PAGES LONG!!!!!!!!!!!!!!!

1. (40 points) Recall that a B-NFA is an NFA where we say that an
INFINITE string is accepted if there is SOME way to process it where
it hits a final state infinitely often. Give an algorithm for the following:
given a B-NFA M, determine if there exists an infinite string that it
accepts.

SOLUTION TO PROBLEM ONE
We just sketch this.

(a) Input $M = (Q, \Sigma, \delta, s, F)$
(b) For all $f \in F$ determine: (1) is there a path from s to f (can be
all e), and (2) is there a path from f back to f (can’t be all e).
(c) If there is some f such that the answer to (1) and (2) is YES then
output YES. If not then output NO.

GOTO NEXT PAGE
2. (30 points) The alphabet is \(\{a, b\} \). Give a B-NFA for the following languages.

In this problem note that \(\{a, b\}^\omega \) means the set of INFINITE strings of 'a's and 'b's. The superscript is an \(\omega \), not a \(w \).

(a) (15 points)

\(\{w \in \{a, b\}^\omega \mid \text{w has an infinite number of } a's \} \)

(b) (15 points)

\(\{w \in \{a, b\}^\omega \mid \text{w has a finite number of } a's \} \)

(c) (0 points) Think about: For the above languages ponder if they could be done by a B-DFA which is a DFA where we say an infinite string accepts if it hits some final state infinitely often.

SOLUTION TO PROBLEM TWO

Omitted. REMIND ME TO DO IN CLASS

GOTO NEXT PAGE
3. (30 points) The alphabet is \{a, b\}. Recall that \(n_a(w)\) is the number of a’s in \(w\).

(a) (10 points) Give a regular expression for

\[
\{ w | n_a(w) \equiv 0 \pmod{3} \}
\]

(b) (10 points) Give a regular expression for

\[
\{ w | n_a(w) \equiv 1 \pmod{3} \}
\]

(c) (10 points) For all \(x, y\) with \(0 < x < y\), give a regular expression for

\[
\{ w | n_a(w) \equiv x \pmod{y} \}
\]

SOLUTION TO PROBLEM THREE

a)

\[b^*(b^*ab^*ab^*)^* \]

b)

\[b^*ab^*(b^*ab^*ab^*)^* \]

c) For each \(w\), let \(\alpha_w\) be \(b^*ab^*a \cdots b^*ab^*\) where there are \(w\) a’s. Then the solution is

\[\alpha_x(\alpha_y)^* \]