Homework 1 Morally Due Feb 6

1. (0 points) If you are not getting emails that the class gets, then email Bill as soon as possible.
2. (30 points) List all of the elements of $\{0,1, \ldots, 20\}$ that have multiplicative inverses mod 21 . For each such element also give the inverse.
3. (40 points) The alphabet is $\{0, \ldots, 9\}$. We interpret the input as a base 10 natural number, read right to left. So the number 29139 will be read 9-3-1-9-2.
(a) (10 points) Compute
$10^{0}(\bmod 14)$
$10^{1}(\bmod 14)$
$10^{2}(\bmod 14)$
etc.
until you spot a pattern. What is the pattern?
(b) (10 points) Recall that
$a_{k} \times 10^{k}+a_{k-1} \times 10^{k-1}+\cdots+a_{0} \times 10^{0} \equiv a_{k}+\cdots+a_{0} \quad(\bmod 9)$.
Come up with a statement of that type for mod 14 . You may use DOT-DOT-DOT and you may have a set of cases.
(c) (20 points) Let

$$
A=\{x: x \equiv 5 \quad(\bmod 14)\} \cup\{x: x \equiv 7 \quad(\bmod 14)\}
$$

(x is in base 10.)
Give the DFA for A by giving the transition table and specifying what are the start state is and what the final states are.
ADVICE For the transtion table do not have LOTS of rows. You can have things like (this is not the actual answer)
For all $\sigma \in\{0, \ldots, 9), \delta(q, \sigma)=x+8 \sigma(\bmod 87)$.
There may be cases.
4. (30 points) We define $\#_{a}(w)$ to be the number of a 's in w. The alphabet is $\{a, b\}$.
(a) (15 points) Draw a DFA for $\left\{w \mid \#_{a}(w) \equiv 0,1(\bmod 4)\right\}$. How many states does this DFA have?
(b) (15 points) Draw a DFA for $\left\{w \mid \#_{a}(w) \equiv 0,2(\bmod 4)\right\}$. How many states does this DFA have? (Hint: this should be less states than the prior part.)

