HW 02 CMSC 452 Morally Due TUES Feb 11 11:00AM Dead-Cat Due THU Feb 13 at 11:00AM

1. (50 points) For this problem you might want to write a program that will, given n, compute $10^0 \pmod{n}$, $10^1 \pmod{n}$, $10^2 \pmod{n}$ etc and find a pattern. If you write such a program KEEP IT - you may need it later in the course.

Write a nice clean easy-to-grade table for the answer. I give an example later.

 \overline{a} means (a, a, \ldots) .

 $\overline{a, b}$ means (a, b, a, b, \ldots) .

For n = 14, 15, 16, 17, 18, 19, 20 give the following

- (a) The weights needed for a DFA classifier for mod n. E.g., If n = 2 the answer is (1, 0)
 If n = 3 the answer is (1)
 If n = 4 the answer is (1, 2, 0)
 If n = 11 the answer is (1, -1)
 (b) The size of a DFA classifier for determining what a number of the determining what a number of the
- (b) The size of a DFA classifier for determining what a number is congruent to mod n.

(For this problem, UNLIKE CLASS, we will count the start state as having input 0 so $\equiv 0 \pmod{n}$. E.g.,

If n = 2 the answer is 3.

If n = 3 the answer is 3.

If n = 4 I leave that to you to figure out.

If n = 11 the answer is 22.

The format for the answer should be like this:

n	pattern	Numb of States
2	$(1,\overline{0})$	3
3	$(\overline{1})$	3
4	$(1, 2, \overline{0})$	18 NOT the real answer
11	$(\overline{1,-1})$	22

- 2. (50 points) In this problem $\Sigma = \{a\}$.
 - (a) (10 points) Write a DFA for

$$L_1 = \{a^n \colon n \equiv 0 \pmod{6}\}.$$

How many states does it have?

(b) (10 points) Write a DFA for

$$L_2 = \{a^n \colon n \equiv 0 \pmod{9}\}.$$

How many states does it have?

- (c) (10 points) IF you were to use the construction to get a DFA for $L_1 \cap L_2$ how many states would it have? (DO NOT do the construction.)
- (d) (20 points) Give a DFA for $L_1 \cap L_2$ that uses fewer states then the one from the construction.
- (e) (THOUGHT QUESTION- DO NOT SUBMIT) IF you were to use the construction to get a DFA for $L_1 \cup L_2$ how many states would it have? (DO NOT do the construction.) IS THERE a DFA for $L_1 \cup L_2$ with fewer states than the one from construction?