HW 05 CMSC 452 Morally Due TUES March 4 11:00AM Dead-Cat Due THU March 6 at 11:00AM

1. For this problem

- The *size* of a DFA is the number of states.
- The *size* of an NFA is the number of states.
- The *size* of a regex is its length.

This is just a FILL IN THE BLANK. You may use *O*-notation. I give two examples.

EXAMPLE ONE

If the question was:

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1)L(\alpha_2)$ of size FILLIN.

The answer would be $n_1 + n_2 + O(1)$.

EXAMPLE TWO

There is an algorithm that will, given a DFA M of size n, returns a regex for L(M) of size FILLIN.

the answer is $2^{O(n)}$. (This will be one of the questions below and I've just given you the answer. Yeah for you!)

The ACTUAL QUESTIONS are on the next page

- (a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size FILLIN.
- (b) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns an NFA for $L(M_1) \cdot L(M_2)$ of size FILLIN.
- (c) There is an algorithm that will, given a regex α of length n, returns an NFA for $L(\alpha)$ of size FILLIN.
- (d) There is an algorithm that will, given a DFA M of size n, returns a regex for L(M) of size FILLIN.

- 2. PROVE the following statements by giving an algorithm (your algorithm may use the algorithms in problem 1 as subroutines) and fill in where it says FILLIN. No proof of the FILLIN is needed.
 - (a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size FILLIN. (NOTE: in Problem 1 we asked for going from two DFA's to an NFA. Here we are asking to go from two DFA's to a DFA.)
 - (b) There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size FILLIN.

- 3. For each of the following state if its is REGULAR or NOT REGULAR. If you say REGULAR then give either a DFA or REGEX for it. If you say NOT REGULAR than prove it using the pumping lemma.
 - (a) $\{a^{\lfloor \log_2(n) \rfloor} \colon n \ge 1\}$
 - (b) $\{a^{2n} \colon n \ge 1\}$
 - (c) $\{a^{2^n} : n \ge 1\}$