
HW 05 CMSC 452
Morally Due TUES March 4 11:00AM

Dead-Cat Due THU March 6 at 11:00AM

1. For this problem

• The size of a DFA is the number of states.

• The size of an NFA is the number of states.

• The size of a regex is its length.

This is just a FILL IN THE BLANK. You may use O-notation. I give
two examples.

EXAMPLE ONE

If the question was:

There is an algorithm that will, given two regex’s α1, α2 of sizes n1, n2,
returns a regex for L(α1)L(α2) of size FILLIN.

The answer would be n1 + n2 +O(1).

EXAMPLE TWO

There is an algorithm that will, given a DFA M of size n, returns a
regex for L(M) of size FILLIN.

the answer is 2O(n). (This will be one of the questions below and I’ve
just given you the answer. Yeah for you!)

The ACTUAL QUESTIONS are on the next page

1



(a) There is an algorithm that will, given two DFA’s M1,M2 of sizes
n1, n2, returns a DFA for L(M1) ∩ L(M2) of size FILLIN.

(b) There is an algorithm that will, given two DFA’s M1,M2 of sizes
n1, n2, returns an NFA for L(M1) · L(M2) of size FILLIN.

(c) There is an algorithm that will, given a regex α of length n, returns
an NFA for L(α) of size FILLIN.

(d) There is an algorithm that will, given a DFA M of size n, returns
a regex for L(M) of size FILLIN.

2



2. PROVE the following statements by giving an algorithm (your algo-
rithm may use the algorithms in problem 1 as subroutines) and fill in
where it says FILLIN. No proof of the FILLIN is needed.

(a) There is an algorithm that will, given two DFA’s M1,M2 of sizes
n1, n2, returns a DFA for L(M1) · L(M2) of size FILLIN. (NOTE:
in Problem 1 we asked for going from two DFA’s to an NFA. Here
we are asking to go from two DFA’s to a DFA.)

(b) There is an algorithm that will, given two regex’s α1, α2 of sizes
n1, n2, returns a regex for L(α1) ∩ L(α2) of size FILLIN.

3



3. For each of the following state if its is REGULAR or NOT REGULAR.

If you say REGULAR then give either a DFA or REGEX for it.

If you say NOT REGULAR than prove it using the pumping lemma.

(a) {ablog2(n)c : n ≥ 1}
(b) {a2n : n ≥ 1}
(c) {a2n : n ≥ 1}

4


