BILL START RECORDING

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

HW05 Solutions

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size **FILL IN**

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size FILL IN FILL IN is n_1n_2 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size FILL IN FILL IN is n_1n_2 . Use Cross Product Construction.

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size FILL IN FILL IN is n_1n_2 . Use Cross Product Construction.

YOU SHOULD DO: This also works if you begin with two NFA's.

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size **FILL IN FILL IN** is n_1n_2 . Use Cross Product Construction.

YOU SHOULD DO: This also works if you begin with two NFA's.

b) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns an NFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size FILL IN FILL IN is n_1n_2 . Use Cross Product Construction.

YOU SHOULD DO: This also works if you begin with two NFA's.

b) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns an NFA for $L(M_1) \cdot L(M_2)$ of size FILL IN FILL IN is $n_1 + n_2$.

a) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns a DFA for $L(M_1) \cap L(M_2)$ of size **FILL IN FILL IN** is n_1n_2 . Use Cross Product Construction.

YOU SHOULD DO: This also works if you begin with two NFA's.

b) There is an algorithm that will, given two DFA's M_1, M_2 of sizes n_1, n_2 , returns an NFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**

FILL IN is $n_1 + n_2$.

Just have a transition from the final states of M_1 to the start state of M_2 , and the final states are just the final states of M_2 .

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ へ ○

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN**

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN FILL IN** is $\leq 2n$ (O(n) is fine).

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN FILL IN** is $\leq 2n$ (O(n) is fine). The construction is on the slides. Its by induction on the length of the regex.

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN**

FILL IN is $\leq 2n$ (O(n) is fine).

The construction is on the slides.

Its by induction on the length of the regex.

YOU SHOULD DO: Redo the proof keeping track of the length of the rules. You will PROVE that you end up with an NFA of size 2*n*.

ション ふゆ アメリア メリア しょうくしゃ

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN**

FILL IN is $\leq 2n$ (O(n) is fine).

The construction is on the slides.

Its by induction on the length of the regex.

YOU SHOULD DO: Redo the proof keeping track of the length of the rules. You will PROVE that you end up with an NFA of size 2*n*.

d) There is an algorithm that will, given a DFA M of size n, returns a regex for L(M) of size **FILL IN**

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN**

FILL IN is $\leq 2n$ (O(n) is fine).

The construction is on the slides.

Its by induction on the length of the regex.

YOU SHOULD DO: Redo the proof keeping track of the length of the rules. You will PROVE that you end up with an NFA of size 2*n*.

ション ふゆ アメリア メリア しょうくしゃ

d) There is an algorithm that will, given a DFA M of size n, returns a regex for L(M) of size **FILL IN FILL IN** is $2^{O(n)}$.

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN**

FILL IN is $\leq 2n$ (O(n) is fine).

The construction is on the slides.

Its by induction on the length of the regex.

YOU SHOULD DO: Redo the proof keeping track of the length of the rules. You will PROVE that you end up with an NFA of size 2*n*.

ション ふゆ アメリア メリア しょうくしゃ

d) There is an algorithm that will, given a DFA M of size n, returns a regex for L(M) of size **FILL IN FILL IN** is $2^{O(n)}$

This is the R(i, j, k) construction.

c) There is an algorithm that will, given a regex α of length *n*, returns an NFA for $L(\alpha)$ of size **FILL IN**

FILL IN is $\leq 2n$ (O(n) is fine).

The construction is on the slides.

Its by induction on the length of the regex.

YOU SHOULD DO: Redo the proof keeping track of the length of the rules. You will PROVE that you end up with an NFA of size 2*n*.

d) There is an algorithm that will, given a DFA M of size n, returns a regex for L(M) of size **FILL IN**

FILL IN is $2^{O(n)}$.

This is the R(i, j, k) construction.

YOU SHOULD DO: This construction also works if you start with an NFA.

Problem 2

PROVE the following statements by giving an algorithm (your algorithm may use the algorithms in problem 1 as subroutines) and fill in where it says **FILLIN**. No proof of the **FILL IN** is needed.

(ロト・日本・モン・モン・モー・ション・ション・

Problem 2

PROVE the following statements by giving an algorithm (your algorithm may use the algorithms in problem 1 as subroutines) and fill in where it says **FILLIN**. No proof of the **FILL IN** is needed.

Go to the next slide.

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1) Input two DFA's M_1 , M_2 of sizes n_1 , n_2 .

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

- 1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .
- 2) Add-an-e-transition construction: NFA M such that

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA M such that $L(M) = L(M_1)L(M_2)$.

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA M such that $L(M) = L(M_1)L(M_2)$. M is of size $n_1 + n_2$.

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA *M* such that $L(M) = L(M_1)L(M_2)$. *M* is of size $n_1 + n_2$.

3) Powerset construction on M: DFA D

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA M such that $L(M) = L(M_1)L(M_2)$. M is of size $n_1 + n_2$.

3) Powerset construction on M: DFA D $L(D) = L(M_1)L(M_2).$

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA M such that $L(M) = L(M_1)L(M_2)$. M is of size $n_1 + n_2$.

3) Powerset construction on M: DFA D $L(D) = L(M_1)L(M_2).$ D has size $2^{n_1+n_2}$.

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA M such that $L(M) = L(M_1)L(M_2)$. M is of size $n_1 + n_2$.

```
3) Powerset construction on M: DFA D
L(D) = L(M_1)L(M_2).
D has size 2^{n_1+n_2}.
```

FILL IN is $2^{n_1+n_2}$.

There is an algorithm that will, given two DFA's M_1 , M_2 of sizes n_1 , n_2 , returns a DFA for $L(M_1) \cdot L(M_2)$ of size **FILL IN**.

1) Input two DFA's M_1, M_2 of sizes n_1, n_2 .

2) Add-an-e-transition construction: NFA M such that $L(M) = L(M_1)L(M_2)$. M is of size $n_1 + n_2$.

3) Powerset construction on *M*: DFA *D* $L(D) = L(M_1)L(M_2).$ *D* has size $2^{n_1+n_2}$.

FILL IN is $2^{n_1+n_2}$.

Reality The blowup in real life is no where near exponential.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

- 1) Input two regex's α_1, α_2 of sizes n_1, n_2 .
- 2) Induction Construction: NFAs M_1 , M_2 such that

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

- 1) Input two regex's α_1, α_2 of sizes n_1, n_2 .
- 2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 . 2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

- 1) Input two regex's α_1, α_2 of sizes n_1, n_2 . 2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.
- 3) Powerset Construction: DFAs D_1 and D_2 such that

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states. $L(D_2) = L(M_2) = L(\alpha_2)$ and D_2 has 2^{2n_2} states.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states. $L(D_2) = L(M_2) = L(\alpha_2)$ and D_2 has 2^{2n_2} states.

4) Cross product Const: DFA D such that

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states. $L(D_2) = L(M_2) = L(\alpha_2)$ and D_2 has 2^{2n_2} states.

4) Cross product Const: DFA D such that $L(D) = L(M_1)L(M_2)$ and D has of size $2^{2n_1}2^{2n_2} = 2^{2n_1+2n_2}$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states. $L(D_2) = L(M_2) = L(\alpha_2)$ and D_2 has 2^{2n_2} states.

4) Cross product Const: DFA D such that L(D) = L(M₁)L(M₂) and D has of size 2²ⁿ2²ⁿ2 = 2²ⁿ1+2n₂.
5) R(i, j, k): Regex of size 2^{O(2²ⁿ1+2n₂)}.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states. $L(D_2) = L(M_2) = L(\alpha_2)$ and D_2 has 2^{2n_2} states.

4) Cross product Const: DFA *D* such that $L(D) = L(M_1)L(M_2)$ and *D* has of size $2^{2n_1}2^{2n_2} = 2^{2n_1+2n_2}$. 5) R(i,j,k): Regex of size $2^{O(2^{2n_1+2n_2})}$. FILL IN is $2^{O(2^{2n_1+2n_2})}$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

3) Powerset Construction: DFAs D_1 and D_2 such that $L(D_1) = L(M_1) = L(\alpha_1)$ and D_1 has 2^{2n_1} states. $L(D_2) = L(M_2) = L(\alpha_2)$ and D_2 has 2^{2n_2} states.

4) Cross product Const: DFA *D* such that $L(D) = L(M_1)L(M_2)$ and *D* has of size $2^{2n_1}2^{2n_2} = 2^{2n_1+2n_2}$. 5) R(i,j,k): Regex of size $2^{O(2^{2n_1+2n_2})}$. FILL IN is $2^{O(2^{2n_1+2n_2})}$.

This answer gets FULL CREDIT but there is a BETTER way on next page.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size FILL IN.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

- 1) Input two regex's α_1, α_2 of sizes n_1, n_2 .
- 2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$.
- 3) Cross Product Cont for NFAS: NFAs N such that

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

- 1) Input two regex's α_1, α_2 of sizes n_1, n_2 .
- 2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$. 3) Cross Product Cont for NFAS: NFAs N such that $L(N) = L(M_1) \cap L(M_2)$

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$. 3) Cross Product Cont for NFAS: NFAs N such that $L(N) = L(M_1) \cap L(M_2)$ M has $2n_1 \times 2n_2 = 4n_1n_2$ states.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$. 3) Cross Product Cont for NFAS: NFAs N such that $L(N) = L(M_1) \cap L(M_2)$ M has $2n_1 \times 2n_2 = 4n_1n_2$ states. 5) R(i, j, k) on NFAs: Regex of size $2^{O(n_1n_2)}$.

There is an algorithm that will, given two regex's α_1, α_2 of sizes n_1, n_2 , returns a regex for $L(\alpha_1) \cap L(\alpha_2)$ of size **FILL IN**.

1) Input two regex's α_1, α_2 of sizes n_1, n_2 .

2) Induction Construction: NFAs M_1 , M_2 such that $L(M_1) = L(\alpha_1)$ and M_1 is of size $\leq 2n_1$. $L(M_2) = L(\alpha_2)$ and M_2 is of size $\leq 2n_2$. 3) Cross Product Cont for NFAS: NFAs N such that $L(N) = L(M_1) \cap L(M_2)$ M has $2n_1 \times 2n_2 = 4n_1n_2$ states. 5) R(i, j, k) on NFAs: Regex of size $2^{O(n_1n_2)}$. FILL IN is $2^{4n_1n_2}$.

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

 $\{a^{\lfloor \log_2(n) \rfloor} \colon n \ge 1\}$

 $\{a^{\lfloor \log_2(n) \rfloor}: n \ge 1\}$ **REGULAR:** This is aa^* .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

```
\{a^{\lfloor \log_2(n) \rfloor}: n \ge 1\}
REGULAR: This is aa^*.
```

 $\{a^{2n}\colon n\geq 1\}$


```
\{a^{\lfloor \log_2(n) \rfloor}: n \ge 1\}
REGULAR: This is aa^*.
```

```
a^{2n}: n \ge 1
REGULAR: This is (aa)(aa)^*
```

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Intuition POW2 keep getting further apart.

Intuition POW2 keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Intuition POW2 keep getting further apart.

Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

Intuition POW2 keep getting further apart.

Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{2^n} \in L$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{2^n}$. Also $a^j(a^k)^i a^\ell \in L$. (Note $k \ge 1$.)

Intuition POW2 keep getting further apart.

Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{2^n} \in L$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{2^n}$. Also $a^j(a^k)^j a^\ell \in L$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell \text{ is a POW2}].$$

Recall that $j + k + \ell = 2^n$.

Intuition POW2 keep getting further apart.

Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{2^n} \in L$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{2^n}$. Also $a^j(a^k)^j a^\ell \in L$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell \text{ is a POW2}].$$

Recall that $j + k + \ell = 2^n$. Hence

$$(\forall i \ge 0)[j + ik + \ell = 2^n + (i - 1)k \text{ is a POW2}].$$

Intuition POW2 keep getting further apart.

Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{2^n} \in L$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{2^n}$. Also $a^j(a^k)^j a^\ell \in L$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell \text{ is a POW2}].$$

ション ふぼう メリン メリン しょうくしゃ

Recall that $j + k + \ell = 2^n$. Hence

$$(\forall i \ge 0)[j + ik + \ell = 2^n + (i - 1)k \text{ is a POW2}].$$

So 2^n , $2^n + k$, $2^n + 2k$, ... are all POW2.

Intuition POW2 keep getting further apart.

Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{2^n} \in L$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{2^n}$. Also $a^j(a^k)^j a^\ell \in L$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell \text{ is a POW2}].$$

Recall that $j + k + \ell = 2^n$. Hence

$$(\forall i \ge 0)[j + ik + \ell = 2^n + (i - 1)k \text{ is a POW2}].$$

ション ふゆ アメリア メリア しょうくしゃ

So 2^n , $2^n + k$, $2^n + 2k$, ... are all POW2. See slide for exciting finish!

So 2^{n} , $2^{n} + k$, $2^{n} + 2k$, ... are all POW2.

So 2^{n} , $2^{n} + k$, $2^{n} + 2k$, ... are all POW2. $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$.

So
$$2^{n}$$
, $2^{n} + k$, $2^{n} + 2k$, ... are all POW2.
 $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$.
 $2^{n} + 2k \ge 2^{n+2}$. So $2k \ge 2^{n+2} - 2^{n} = 2^{n} \times 3$, so $k \ge \frac{3}{2} \times 2^{n}$.

So 2^{n} , $2^{n} + k$, $2^{n} + 2k$, ... are all POW2. $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$. $2^{n} + 2k \ge 2^{n+2}$. So $2k \ge 2^{n+2} - 2^{n} = 2^{n} \times 3$, so $k \ge \frac{3}{2} \times 2^{n}$. :

So
$$2^{n}$$
, $2^{n} + k$, $2^{n} + 2k$, ... are all POW2.
 $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$.
 $2^{n} + 2k \ge 2^{n+2}$. So $2k \ge 2^{n+2} - 2^{n} = 2^{n} \times 3$, so $k \ge \frac{3}{2} \times 2^{n}$.
 \vdots
So
 $(\forall i \ge 1)[2^{n} + ik \ge 2^{n+i}]$. So $ik \ge 2^{n+i} - 2^{n} = 2^{n}(2^{i} - 1)$ so
 $k \ge \frac{2^{i} - 1}{i}2^{n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 今へぐ

So
$$2^{n}$$
, $2^{n} + k$, $2^{n} + 2k$, ... are all POW2.
 $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$.
 $2^{n} + 2k \ge 2^{n+2}$. So $2k \ge 2^{n+2} - 2^{n} = 2^{n} \times 3$, so $k \ge \frac{3}{2} \times 2^{n}$.

So
 $(\forall i \ge 1)[2^{n} + ik \ge 2^{n+i}]$. So $ik \ge 2^{n+i} - 2^{n} = 2^{n}(2^{i} - 1)$ so
 $k \ge \frac{2^{i} - 1}{i}2^{n}$.
Key $\lim_{i \to \infty} \frac{2^{i} - 1}{i} = \infty$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

So
$$2^{n}$$
, $2^{n} + k$, $2^{n} + 2k$, ... are all POW2.
 $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$.
 $2^{n} + 2k \ge 2^{n+2}$. So $2k \ge 2^{n+2} - 2^{n} = 2^{n} \times 3$, so $k \ge \frac{3}{2} \times 2^{n}$.
:
So
 $(\forall i \ge 1)[2^{n} + ik \ge 2^{n+i}]$. So $ik \ge 2^{n+i} - 2^{n} = 2^{n}(2^{i} - 1)$ so
 $k \ge \frac{2^{i}-1}{i}2^{n}$.
Key $\lim_{i\to\infty} \frac{2^{i}-1}{i} = \infty$.
So k is bigger than any natural number!

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目・ のへの

So
$$2^{n}$$
, $2^{n} + k$, $2^{n} + 2k$, ... are all POW2.
 $2^{n} + k \ge 2^{n+1}$. So $k \ge 2^{n+1} - 2^{n} = 2^{n}$.
 $2^{n} + 2k \ge 2^{n+2}$. So $2k \ge 2^{n+2} - 2^{n} = 2^{n} \times 3$, so $k \ge \frac{3}{2} \times 2^{n}$.
:
So $(\forall i \ge 1)[2^{n} + ik \ge 2^{n+i}]$. So $ik \ge 2^{n+i} - 2^{n} = 2^{n}(2^{i} - 1)$ so $k \ge \frac{2^{i-1}}{i}2^{n}$.
Key $\lim_{i\to\infty} \frac{2^{i-1}}{i} = \infty$.
So k is bigger than any natural number!
Contradiction.