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HW05 Solutions



Problem 1a, 1b

a) There is an algorithm that will, given two DFA’s M1,M2 of sizes
n1, n2, returns a DFA for L(M1) ∩ L(M2) of size FILL IN

FILL IN is n1n2.
Use Cross Product Construction.

YOU SHOULD DO: This also works if you begin with two NFA’s.

b) There is an algorithm that will, given two DFA’s M1,M2 of sizes
n1, n2, returns an NFA for L(M1) · L(M2) of size FILL IN

FILL IN is n1 + n2.
Just have a transition from the final states of M1 to the start state
of M2, and the final states are just the final states of M2.
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Problem 1c, 1d

c) There is an algorithm that will, given a regex α of length n,
returns an NFA for L(α) of size FILL IN

FILL IN is ≤ 2n (O(n) is fine).
The construction is on the slides.
Its by induction on the length of the regex.

YOU SHOULD DO: Redo the proof keeping track of the length
of the rules. You will PROVE that you end up with an NFA of size
2n.

d) There is an algorithm that will, given a DFA M of size n,
returns a regex for L(M) of size FILL IN

FILL IN is 2O(n).

This is the R(i , j , k) construction.

YOU SHOULD DO: This construction also works if you start
with an NFA.
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Problem 2

PROVE the following statements by giving an algorithm (your
algorithm may use the algorithms in problem 1 as subroutines) and
fill in where it says FILLIN. No proof of the FILL IN is needed.

Go to the next slide.
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Problem 2a

There is an algorithm that will, given two DFA’s M1,M2 of sizes
n1, n2, returns a DFA for L(M1) · L(M2) of size FILL IN.

1) Input two DFA’s M1,M2 of sizes n1, n2.

2) Add-an-e-transition construction: NFA M such that
L(M) = L(M1)L(M2).
M is of size n1 + n2.

3) Powerset construction on M: DFA D
L(D) = L(M1)L(M2).
D has size 2n1+n2 .

FILL IN is 2n1+n2 .

Reality The blowup in real life is no where near exponential.
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Problem 2b

There is an algorithm that will, given two regex’s α1, α2 of sizes
n1, n2, returns a regex for L(α1) ∩ L(α2) of size FILL IN.

1) Input two regex’s α1, α2 of sizes n1, n2.

2) Induction Construction: NFAs M1, M2 such that
L(M1) = L(α1) and M1 is of size ≤ 2n1.
L(M2) = L(α2) and M2 is of size ≤ 2n2.

3) Powerset Construction: DFAs D1 and D2 such that
L(D1) = L(M1) = L(α1) and D1 has 22n1 states.
L(D2) = L(M2) = L(α2) and D2 has 22n2 states.

4) Cross product Const: DFA D such that
L(D) = L(M1)L(M2) and D has of size 22n122n2 = 22n1+2n2 .

5) R(i , j , k): Regex of size 2O(22n1+2n2 ).
FILL IN is 2O(22n1+2n2 ).
This answer gets FULL CREDIT but there is a BETTER way on
next page.
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Problem 2b- Alt Solution

There is an algorithm that will, given two regex’s α1, α2 of sizes
n1, n2, returns a regex for L(α1) ∩ L(α2) of size FILL IN.

1) Input two regex’s α1, α2 of sizes n1, n2.

2) Induction Construction: NFAs M1, M2 such that
L(M1) = L(α1) and M1 is of size ≤ 2n1.
L(M2) = L(α2) and M2 is of size ≤ 2n2.

3) Cross Product Cont for NFAS: NFAs N such that
L(N) = L(M1) ∩ L(M2)
M has 2n1 × 2n2 = 4n1n2 states.

5) R(i , j , k) on NFAs: Regex of size 2O(n1n2).

FILL IN is 24n1n2 .
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{ablog2(n)c : n ≥ 1}
REGULAR: This is aa∗.

{a2n : n ≥ 1}
REGULAR: This is (aa)(aa)∗
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Problem 3c: L = {a2n
: n ∈ N} is Not Regular

Intuition POW2 keep getting further apart.
Pumping Lemma says you can always add some constant k to
produce a word in the language.

Proof
By Pumping Lemma for long enough a2

n ∈ L there exist
x = aj , y = ak , z = a` with xyz = a2

n
. Also aj(ak)ia` ∈ L.

(Note k ≥ 1.)

(∀i ≥ 0)[j + ik + ` is a POW2].

Recall that j + k + ` = 2n.
Hence

(∀i ≥ 0)[j + ik + ` = 2n + (i − 1)k is a POW2].

So 2n, 2n + k , 2n + 2k , . . . are all POW2.
See slide for exciting finish!
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{a2n
: n ∈ N} is Not Regular (cont)

So 2n, 2n + k , 2n + 2k , . . . are all POW2.

2n + k ≥ 2n+1. So k ≥ 2n+1 − 2n = 2n.

2n + 2k ≥ 2n+2. So 2k ≥ 2n+2 − 2n = 2n × 3, so k ≥ 3
2
× 2n.

...

So
(∀i ≥ 1)[2n + ik ≥ 2n+i ]. So ik ≥ 2n+i − 2n = 2n(2i − 1) so

k ≥ 2i−1
i

2n.

Key limi→∞
2i−1
i

=∞.
So k is bigger than any natural number!
Contradiction.
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