# BILL START RECORDING

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

# **HW 11 Solutions**

Describe the reduction of 3SAT to IND SET.

Describe the reduction of 3SAT to IND SET. 1) Input  $(L_{11} \vee L_{12} \vee L_{13}) \wedge \cdots \wedge (L_{k1} \vee L_{k2} \vee L_{k3})$ 

Describe the reduction of 3SAT to IND SET. 1) Input  $(L_{11} \lor L_{12} \lor L_{13}) \land \cdots \land (L_{k1} \lor L_{k2} \lor L_{k3})$ 2)

$$V = \{(i, L_{ij}) \colon 1 \le i \le k, 1 \le j \le 3\}$$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Describe the reduction of 3SAT to IND SET. 1) Input  $(L_{11} \lor L_{12} \lor L_{13}) \land \cdots \land (L_{k1} \lor L_{k2} \lor L_{k3})$ 2)

$$V = \{(i, L_{ij}) \colon 1 \le i \le k, 1 \le j \le 3\}$$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

#### 3) E is

Describe the reduction of 3SAT to IND SET. 1) Input  $(L_{11} \lor L_{12} \lor L_{13}) \land \cdots \land (L_{k1} \lor L_{k2} \lor L_{k3})$ 2)

$$V = \{(i, L_{ij}) : 1 \le i \le k, 1 \le j \le 3\}$$

3) *E* is

 $\{(i, L_{i1}, (i, L_{i2}), (i, L_{i2}, (i, L_{i3}), (i, L_{i3}, (i, L_{i1}): 1 \le i \le k\}$ 

イロト 不得 トイヨト イヨト ヨー ろくで

Describe the reduction of 3SAT to IND SET. 1) Input  $(L_{11} \lor L_{12} \lor L_{13}) \land \cdots \land (L_{k1} \lor L_{k2} \lor L_{k3})$ 2)

$$V = \{(i, L_{ij}) : 1 \le i \le k, 1 \le j \le 3\}$$

3) E is

 $\{(i, L_{i1}, (i, L_{i2}), (i, L_{i2}, (i, L_{i3}), (i, L_{i3}, (i, L_{i1}): 1 \le i \le k\}$ 

$$\bigcup\{(i,L_{ij}),(i',L_{i',j'}):i\neq i'\wedge L_{ij}=\neg L_{i',j'}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Come up with a 3-CNF formula that is NOT in 3-SAT. Apply your algorithm to it. What does the graph look like?

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land$$

Come up with a 3-CNF formula that is NOT in 3-SAT. Apply your algorithm to it. What does the graph look like?

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land$$

$$(x \lor y \neg \lor \neg z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land$$

Come up with a 3-CNF formula that is NOT in 3-SAT. Apply your algorithm to it. What does the graph look like?

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land$$
$$(x \lor y \neg \lor \neg z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land$$
$$(\neg x \lor \neg y \lor z) \land (\neg x \lor y \neg \lor \neg z)$$

Come up with a 3-CNF formula that is NOT in 3-SAT. Apply your algorithm to it. What does the graph look like?

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land$$
$$(x \lor y \neg \lor \neg z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land$$
$$(\neg x \lor \neg y \lor z) \land (\neg x \lor y \neg \lor \neg z)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

The graph would be a mess!

Come up with a 3-CNF formula that is NOT in 3-SAT. Apply your algorithm to it. What does the graph look like?

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land$$
$$(x \lor y \neg \lor \neg z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land$$
$$(\neg x \lor \neg y \lor z) \land (\neg x \lor y \neg \lor \neg z)$$

The graph would be a mess! Most formulas are satisfiable.

Come up with a 3-CNF formula that is NOT in 3-SAT. Apply your algorithm to it. What does the graph look like?

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land$$
$$(x \lor y \neg \lor \neg z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land$$
$$(\neg x \lor \neg y \lor z) \land (\neg x \lor y \neg \lor \neg z)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

$$SQ_k = \{x : (\exists y_1, \dots, y_k) | x = y_1^2 + \dots + y_k^2 \}.$$

$$SQ_k = \{x \colon (\exists y_1, \dots, y_k) [x = y_1^2 + \dots + y_k^2]\}.$$
  
a) Show that, for all k, SQ<sub>k</sub> is in NP.

$$SQ_{k} = \{x : (\exists y_{1}, ..., y_{k})[x = y_{1}^{2} + \dots + y_{k}^{2}]\}.$$
  
a) Show that, for all k, SQ<sub>k</sub> is in NP.  
$$SQ_{k} = \{x : (\exists y_{1}, ..., y_{k})[x = y_{1}^{2} + \dots + y_{k}^{2}]\}.$$

$$\begin{split} &\mathrm{SQ}_k = \{x \colon (\exists y_1, \dots, y_k) [x = y_1^2 + \dots + y_k^2] \}.\\ &\text{a) Show that, for all } k, \, \mathrm{SQ}_k \text{ is in NP.}\\ &\mathrm{SQ}_k = \{x \colon (\exists y_1, \dots, y_k) [x = y_1^2 + \dots + y_k^2] \}.\\ &\text{Since } y_i \leq x, \, |y_i| < |x| \text{ (thats length not abs val.)} \end{split}$$

$$\begin{split} &\mathrm{SQ}_k = \{x \colon (\exists y_1, \ldots, y_k) [x = y_1^2 + \cdots + y_k^2] \}.\\ &\text{a) Show that, for all } k, \, \mathrm{SQ}_k \text{ is in NP.}\\ &\mathrm{SQ}_k = \{x \colon (\exists y_1, \ldots, y_k) [x = y_1^2 + \cdots + y_k^2] \}.\\ &\text{Since } y_i \leq x, \, |y_i| < |x| \text{ (thats length not abs val.)}\\ &\mathrm{Addition and mult are easy, so verification is easy.} \end{split}$$

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ 

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ .

b) Is SQ<sub>2</sub>  $\in$  P? Is SQ<sub>2</sub> NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ .

ション ふぼう メリン メリン しょうくしゃ

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . *x* is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

ション ふぼう メリン メリン しょうくしゃ

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

 $\mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ 

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

 $\mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ 

which means  $\mathrm{SQ}_2$  can be solved by making queries to FACT.

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

 $\mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ 

which means  $\mathrm{SQ}_2$  can be solved by making queries to FACT. If  $\mathrm{SQ}_2$  is NP-complete then  $\mathrm{SAT} \leq \mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ .

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

 $\mathrm{SQ}_2 \leq_T \mathrm{FACT}$ 

which means  $SQ_2$  can be solved by making queries to FACT. If  $SQ_2$  is NP-complete then  $SAT \leq SQ_2 \leq_{\mathcal{T}} FACT$ . Recall  $SAT \leq FACT \rightarrow TAUT \in NP$  which is unlikely.

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

 $\mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ 

which means  $\mathrm{SQ}_2$  can be solved by making queries to FACT. If  $\mathrm{SQ}_2$  is NP-complete then  $\mathrm{SAT} \leq \mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ . Recall  $\mathrm{SAT} \leq \mathrm{FACT} \rightarrow \mathrm{TAUT} \in \mathrm{NP}$  which is unlikely.  $\mathrm{SAT} \leq_{\mathcal{T}} \mathrm{FACT}$  doesn't imply  $\mathrm{TAUT} \in \mathrm{NP}$  but it implies other things unlikely.

b) Is  $SQ_2 \in P$ ? Is  $SQ_2$  NP-Complete? **The 2-Square Theorem** Let  $x = 2^a p_1^{r_1} \cdots p_b^{r_b} q_1^{s_1} \cdots q_d^{s_d}$ where  $(\forall i)[p_i \equiv 1 \pmod{4}]$  and  $(\forall i)[q_i \equiv 3 \pmod{4}]$ . x is the sum of two squares iff  $(\forall i)[s_i \equiv 1 \pmod{2}]$ . Not known to be in P.

 $\mathrm{SQ}_2$  can be computed IF you could factor.

 $\mathrm{SQ}_2 \leq_{\mathcal{T}} \mathrm{FACT}$ 

which means  $SQ_2$  can be solved by making queries to FACT.

If  $SQ_2$  is NP-complete then  $SAT \leq SQ_2 \leq_T FACT$ .

Recall  $SAT \leq FACT \rightarrow TAUT \in NP$  which is unlikely.

 $SAT \leq_{\mathcal{T}} FACT$  doesn't imply  $TAUT \in NP$  but it implies other things unlikely.

We do not think  $SQ_2$  is NP-complete.

#### c) Is $\mathrm{SQ}_3 \in \mathrm{P}?$ Is $\mathrm{SQ}_3$ NP-Complete?

#### c) Is $SQ_3 \in P$ ? Is $SQ_3$ NP-Complete? Legendre's 3-square theorem: $x \in SQ_3$ iff $x \neq 4^a(8b+7)$ .

c) Is  $SQ_3 \in P$ ? Is  $SQ_3$  NP-Complete? Legendre's 3-square theorem:  $x \in SQ_3$  iff  $x \neq 4^a(8b+7)$ .  $SQ_3 \in P$ :

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

c) Is SQ<sub>3</sub> ∈ P? Is SQ<sub>3</sub> NP-Complete?
Legendre's 3-square theorem: x ∈ SQ<sub>3</sub> iff x ≠ 4<sup>a</sup>(8b + 7).
SQ<sub>3</sub> ∈ P:
1) Input x.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

c) Is  $\mathrm{SQ}_3 \in \mathrm{P}?\,$  Is  $\mathrm{SQ}_3$  NP-Complete?

Legendre's 3-square theorem:  $x \in SQ_3$  iff  $x \neq 4^a(8b+7)$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 $SQ_3 \in P$ :

1) Input x.

2) Keep dividing 4 into it until you get

 $x = 4^{a}c$  where 4 does not divide c.

c) Is  $\mathrm{SQ}_3 \in \mathrm{P}?\,$  Is  $\mathrm{SQ}_3$  NP-Complete?

Legendre's 3-square theorem:  $x \in SQ_3$  iff  $x \neq 4^a(8b+7)$ .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $SQ_3 \in P$ : 1) Input x. 2) Keep dividing 4 into it until you get  $x = 4^a c$  where 4 does not divide c. 3) If  $c \neq 7 \pmod{8}$  then  $x \in SQ_3$ , else  $x \notin SQ_3$ .

# Problem 2d

◆□▶ ◆圖▶ ◆喜▶ ◆喜▶ 言 - ∽��?

d) Is  $\mathrm{SQ}_4\in\mathrm{P}?$  Is  $\mathrm{SQ}_4$  NP-Complete? It is know that every number is the sum of 4 squares. So  $\mathrm{SQ}_4=\mathsf{N}\in\mathrm{P}.$ 

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

d) Is  $SQ_4 \in P$ ? Is  $SQ_4$  NP-Complete? It is know that every number is the sum of 4 squares. So  $SQ_4 = N \in P$ .

e) Is  $SQ_5 \in P$ ? Is  $SQ_5$  NP-Complete? It is know that every number is the sum of 4 squares. So  $SQ_5 = N \in P$ .

・ロト・四ト・モート ヨー うへの

# **Problem 3a**

#### $A_k = \{G: G \text{ is Planar and } G \text{ is } k\text{-colorable } \}.$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

## **Problem 3a**

$$A_k = \{G: G \text{ is Planar and } G \text{ is } k\text{-colorable } \}.$$
  
Show that, for all k, the set  $A_k$  is in NP.  
$$A_k = \{G = (V, E): (\exists f)$$

$$[f \colon V \to [k] \land (\forall (a, b) \in E[f(a) \neq f(b)] \land G$$
 Planar].

<ロ> <畳> <差> <差> <差> のへの

b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.



b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

c) Is  $A_3 \in P$ ? Is  $A_3$  NP-complete?



b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

c) Is  $A_3 \in P$ ? Is  $A_3$  NP-complete?  $A_3$  is NP-complete so prob not in P.

b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

c) Is  $A_3 \in P$ ? Is  $A_3$  NP-complete?  $A_3$  is NP-complete so prob not in P.

b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

c) Is  $A_3 \in P$ ? Is  $A_3$  NP-complete?  $A_3$  is NP-complete so prob not in P.

d) Is  $A_4 \in P$ ? Is  $A_4$  NP-complete?

b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

c) Is  $A_3 \in \mathbb{P}$ ? Is  $A_3$  NP-complete?  $A_3$  is NP-complete so prob not in P.

d) Is  $A_4 \in P$ ? Is  $A_4$  NP-complete? All planar graphs are 4-colorable. Hence  $A_4$  is the set of all planar graphs,  $A_4 \in P$ .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

c) Is  $A_3 \in \mathbb{P}$ ? Is  $A_3$  NP-complete?  $A_3$  is NP-complete so prob not in P.

d) Is  $A_4 \in P$ ? Is  $A_4$  NP-complete? All planar graphs are 4-colorable. Hence  $A_4$  is the set of all planar graphs,  $A_4 \in P$ .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

e) Is  $A_5 \in P$ ? Is  $A_5$  NP-complete?

b) Is  $A_2 \in P$ ? YES Is  $A_2$  NP-complete? PROB NOT.

c) Is  $A_3 \in \mathbb{P}$ ? Is  $A_3$  NP-complete?  $A_3$  is NP-complete so prob not in P.

d) Is  $A_4 \in P$ ? Is  $A_4$  NP-complete? All planar graphs are 4-colorable. Hence  $A_4$  is the set of all planar graphs,  $A_4 \in P$ .

e) Is  $A_5 \in P$ ? Is  $A_5$  NP-complete? All planar graphs are 4-colorable. Hence  $A_5$  is the set of all planar graphs,  $A_5 \in P$ .

ション ふぼう メリン メリン しょうくしゃ

# Point of Problems 2 and 3

For problems 2 and 3 a theorem in MATH enabled us to show that some problems were in P.  $% \left( {{{\rm{P}}_{{\rm{s}}}} \right)$ 

For problems 2 and 3 a theorem in MATH enabled us to show that some problems were in P.

To show  $P\neq NP$  we have to prove that no (perhaps hard) theorem in math will show SAT is in P

For problems 2 and 3 a theorem in MATH enabled us to show that some problems were in P.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

To show  $P\neq NP$  we have to prove that no (perhaps hard) theorem in math will show SAT is in P

#### **Respect Lower Bounds!**