
If that Was True I Would Know it!
A Result in Kolmogorov Complexity

(This manuscript is essentially a chapter of Problems with a Point.)

1 Point

As a graduate student, in 1983, I came across a book in the library that
claimed to solve Fermat’s Last Theorem (FLT) using elementary methods.
(This was before Wiles showed FLT true using rather advanced methods.) I
knew that the claim was false. Why? Because if FLT had really been
solved, then I would know that. I was not bragging about how much
math I knew; I was bragging about how much math I knew of. Was that a
rigorous proof technique? No, but it is useful and often correct.

I now tell the tale of how I used this technique in Kolmogorov Complexity.
In particular, I knew that the Kolmogorov function could not be of interme-
diary Turing degree because if there were a natural intermediary Tur-
ing degree then I would know that. This chapter will be self-contained;
hence, I will define all of these terms. For more on Kolmogorov complexity
see the classic book by Li and Vitanyi [Li and Vitányi(2008)].

2 How to Measure Randomness Intuitively

Intuitively the string 0000000000000000000000 does not seem random. How
to make this rigorous? Note that there is a program of length lg n + O(1)
that prints out 0n:

for i = 1 to n print(0)

Conversely, the string 01101000110000001110101010001100 does seem ran-
dom. The shortest program to print it out might be

print(01101000110000001110101010001100)

which is roughly the length of the string itself.
Taking a cue from the above two examples, we will define the randomness

of a string x to be the size of the shortest program that prints x. We need
a formal notion of program.

1

3 A Short Introduction to Computability The-

ory

We will not define Turing machines formally. All you need to know is the
following:

• A function can be computed by a Turing machine iff the function can
be computed by a computer program, say, written in JAVA.

• Much like Java programs, it is quite possible that a Turing machine
run on an input will never halt.

• Turing machines have a finite description, which can be interpreted as
code. That is, given a description M and an input x, one can run
M(x).

• The program
For i = 1 to n print(0)

has length lg n + O(1).

• If x is a string of length n then the program
print(x)

has length n + O(1).

Notation 3.1 M1,M2, . . . is the list of all Turing machines. Let i, x ∈ N.
If, when Mi is run on x, the computation terminates with output y, then we
write Mi(x) = y. We take the index i to be in base 2 so the length of Mi is
|i| = lg(i) + O(1).

Def 3.2 A function f : N→ N is computable if there exists a Turing machine
M such that, for all x, M(x) = f(x). A set A is decidable if its characteristic
function is computable.

Example 3.3 Most functions you encounter in mathematics are computable.
For example, addition, squaring, exponentiation, and given n find the nth
prime. Most sets you encounter in mathematics are decidable. For example,
evens, primes, and squares.

2

Def 3.4 Let i, s, x ∈ N.

Mi,s(x) =

{
y if the computation Mi(x) halts within s steps and outputs y

NO otherwise

(1)

The function f(i, s, x) = Mi,s(x) is computable: Run Mi(x) for s steps
and either (1) it halts within s steps, so output what it outputs, or (2) it
does not, so output NO.

We now give an example of an undecidable set.

Def 3.5 HALT is the set {x : Mx(x) halts }.

Note 3.6 A more natural set for HALT would be {(x, y) : Mx(y) halts }.
However, the version we use is easier to work with and ends up being equiv-
alent, as we will see later.

Theorem 3.7 HALT is undecidable.

Proof: Assume, by way of contradiction, that HALT is decidable. Hence
we will be able to make the query x ∈ HALT in our program and get an
answer back. Let Mi be the Turing machine that does the following

1. Input(x)

2. Ask x ∈ HALT. Note that this will be YES if Mx(x) halts and NO if
Mx(x) does not halt.

3. If x ∈ HALT then go into an infinite loop, else halt.

Is i ∈ HALT? We show that both answers, YES and NO, lead to a
contradiction.

If i ∈ HALT then Mi(i) halts. Hence i ∈ HALT. When Mi is run on
i, the instructions in step 3 say that it goes into an infinite loop. Hence
i /∈ HALT. This is a contradiction.

If i /∈ HALT then Mi(i) does not halt. Hence i /∈ HALT. When Mi is
run on i, the instructions in step 3 say that the computation halts. Hence
i /∈ HALT. This is a contradiction.

3

Geoffrey Pullum [Pullum(2004)] presents the proof that Halt is undecid-
able as a poem in the style of Dr. Seuss.

We need the notion of If I had access to the function g then the function
f would be computable. We could define oracle Turing machines formally but
instead we define it informally.

Def 3.8 An Oracle Turing Machine is a Turing machine that has the ability
to make a call to an unspecified function g, called the oracle. The Oracle
Turing machine is defined independent of the function. We denote an oracle
Turing machine by M

()
i . The notation M g

i (x) means that we run the M
()
i

with oracle g and on input x.

Def 3.9 Let f, g : N → N. We say f ≤T g if there is an oracle Turing
machine M () such that M g computes f . This is called a Turing reduction
We say f <T g if f ≤T g but g 6≤T f , and f ≡T g if f ≤T g and g ≤T f .

Exercise Let HALT0 = {(x, y) | Mx(y) halts }. Show that HALT ≤T

HALT0 and HALT0 ≤T HALT. This is what we meant in the note following
Definition 3.6 by saying that the two sets were equivalent.

The following lemma we leave to the reader:

Lemma 3.10 If f ≤T g and g is computable then f is computable.

Given a function how do you prove that is undecidable?
One way is by contradiction. The proof that HALT is undecidable is by

contradiction. We will later define the Kolmogorov function and show it is
not computable by contradiction.

The most common way to show that a function f is not computable is to
take a known undecidable set A (almost always HALT) and show A ≤T f .

4 Intermediary Sets

We can rewrite the statement HALT is undecidable as ∅ <T HALT. A set A
such that ∅ <T A <T HALT is called an intermediary sets. In 1950 it was
an open problem to determine if there were any such sets. In 1954 Post and
Kleene first showed there were such sets. What are these sets? I once had
the following conversation with my Darling about these sets:

4

Bill: Darling, if I told you there were sets that were not decidable but
easier than the halting problem, would you find that interesting?

Darling: Yes, unless. . .
Bill: Great! Because there are. Oh, I interrupted you – what were you

saying.
Darling: I would find the existence of such sets interesting unless they

were some dumb-ass sets that people constructed just for the sole point of
being undecidable but easier than the halting problem.

Bill: You nailed it!

In a nutshell, such sets are not natural. Hence the sets themselves are
not interesting. It would be nice to have natural, and hence interesting,
intermediary sets.

Most computability theorists think that there are no natural intermediary
sets. It is not clear how to prove this. In fact, it is not even clear how to
state this rigorously.

5 How to Measure Randomness Formally

We use TM to abbreviate “Turing machine.”

Def 5.1 The Kolmogorov complexity of a string x, denoted C(x), is the
length of the shortest TM M such that M(0) = x. We often call a TM that
prints out a string x a description of x.

Note 5.2 The definition of C depends on the formal definition of TM.
t is possible that if you define TM’s using Java programs then C(0n) =
blg(n)c + 1000 whereas if you define TM’s using Fortran programs then
C(0n) = blg(n)c+ 5. However, for any two types of TMs, there is a constant
c such that the two C(x)’s differ by at most c. Hence this will not affect any
of our results.

C is a measure of randomness. If C(x) ≥ |x| then we think of x as being
random. Are there such strings? Yes!

Lemma 5.3 For all n ≥ 1 there is a string x ∈ {0, 1}n such that C(x) ≥ n.

5

Proof: Assume, by way of contradiction, for all x ∈ {0, 1}n, C(x) < n.
Map each x ∈ {0, 1}n to the program that prints it. Note that this map is
1-1. There are 2n elements in the domain and

n−1∑
i=0

2i = 2n − 1

in the range. Hence the map cannot be 1-1. Contradiction.

How hard is C? We first show that C ≤T HALT and then that C is not
computable.

Theorem 5.4 C ≤T HALT.

Proof:
Let c be the constant such that, for all x, C(x) ≤ |x|+ c.

1. Input x. We want to know C(x).

2. Let M0,M1, . . . list out all TM’s in order of size (within the same size
list it out lexicographically).

3. For e = 0 until you get a YES answer: ask the HALT oracle: Does
Me(0) halt and output x?

4. The first time you get a YES, halt and output |Me|.

We need a lemma

Theorem 5.5 C is not computable.

Proof:
Assume, by way of contradiction, that C is computable. Assume also

that the program for C is of size n. Consider the following program

for each x ∈ {0, 1}2n
compute C(x)
if C(x) ≥ 2n then print(x) and stop.

6

By Lemma 5.3 there will be an x ∈ {0, 1}2n with C(x) ≥ 2n. Hence such
and x will be found and output. Hence the above program prints out a string
x such that C(x) ≥ 2n.

This program is of size n+ lg(n) +O(1). Hence C(x) ≤ n+ lg(n) +O(1).
OH, so we have

2n < n + lg(n) + O(1)

This is a contradiction.
More succintly: we found a string of HIGH Kolm-complexity that has a

SHORT program to print it.

6 Is the Kolmogorov Function Intermediary?

As a grad student, in 1984, I came across Theorems 5.4 and 5.5 which together
imply ∅ <T C ≤T HALT. Unlike most proofs of non-computability, the
proof that C was not computable did not show HALT ≤T C. Hence it was
possible that C is an intermediary set. I knew that possibility was false.
Why? Because If there were a natural intermediary set then I would
know that. I was not bragging about how much computability theory I
knew; I was bragging about how much computability theory I knew of. Is
that a rigorous proof technique? No, but it is useful and often correct.

Was I correct? Yes. I asked around (this was before the Web and even
email was not as common in 1984 as it is in 2018) and eventually Peter Gacs
(a professor at Boston University) gave a proof that HALT ≤T C (on paper)
to Mihai Gereb (a graduate student at Harvard) who gave it to me. I would
have preferred to be wrong and to have seen a natural intermediary set. Oh,
well.

Here is the proof:

Def 6.1 Let Cs(x) be the size of the shortest TM M such that M(0) = x
and halts within s steps.

Theorem 6.2 HALT ≤T C.

Proof:
Here is the algorithm for HALT that uses C as an oracle.

7

1. Input(x) (we want to know if Mx(x) halts). Let |x| = n.

2. Find s0 such that, for all y ∈ {0, 1}2n, Cs0(y) = C(y). (This step uses
the oracle for C.)

3. Run Mx(x) for s0 steps. If it halts, then output YES. If not, then
output NO. (We still need to prove that this is correct.)

We need to show that if Mx(x) does not halt within s0 steps then it never
halts. Assume, by way of contradiction, that Mx(x) halts in s ≥ s0 steps.
Note that, for all y ∈ {0, 1}2n, Cs(y) = C(y). The following algorithm will
be a short description of a string that lacks a short description.

1. Run Mx(x). Let s be the number of steps it took to halt.

2. For all y ∈ {0, 1}an compute Cs(y) (which is C(y)).

3. Let y be a string of length an such that Cs(y) ≥ |y|.

4. Output y.

The above algorithm can be described with n + O(1) bits. Hence

C(y) ≤ n + O(1).

By the definition of s we have

C(y) = Cs(y) ≥ |y| = 2n.

Hence

2n = |y| ≤ C(y) ≤ n + O(1)

This yields a contradiction.

8

7 The Point Reiterated

Let Q be a statement in mathematics that is either true or false. You don’t
know which. Should you try to prove Q or ¬Q? How do you decide what
to spend more time on? You can do examples or see what fits in with other
mathematics. You can see what people who have worked on the problem
think. And you can sometimes use:

If Q is true then I would know that. Hence I will try to prove ¬Q.

I am not claiming this as a rigorous proof technique. But it may be used
as a starting point. Note that I might have wasted a lot of time trying to
understand an allegedly easy proof of FLT or trying to show that C was
intermediary had I not employed this method.

References

[Li and Vitányi(2008)] Li and Vitányi (2008). An introduction to Kol-
mogorov complexity and its applications (Springer, New York, Heidelberg,
Berlin), this is the third edition.

[Pullum(2004)] Pullum, G. (2004). Scooping the loop snooper, http://www.
lel.ed.ac.uk/~gpullum/loopsnoop.html.

9

