Undecidability of CFG Complementation Exposition by William Gasarch

1 The Problem

Given a CFG G we want to know if $\overline{L(G)}$ is also a CFG. We will show this is undecidable. The proof we give was emailed to us by Harry Lewis. It is likely well known.

2 Needed Lemmas

Lemma 2.1 Let G be a CFG over Σ . Let $\$ \in \Sigma$. Let Let L' be the set of strings w such that

- w does not contain \$, and
- there exists $w' \in L(G)$ such that $w' = w \$ \Sigma^*$.

Then L' is a CFL.

Proof:

We show how to transform the CFG G into a CFG for L'. Replace every rule of the form

$$X \to \alpha \$ \beta$$
 where $\alpha \in (\Sigma - \$)$

with the rule

 $X \to \alpha$.

Def 2.2

- 1. $D(M_e) = \{x : M_e(x) \downarrow\}.$
- 2. A *promise problem* is a problem where you are given *e* and promised something about it. We give the only example of a promise we will use in the next item.
- 3. PROM is the following promise: $D(M_e)$ is either \emptyset OR is NOT a CFL.

Lemma 2.3 The following promise problem, which we denote PROMEMPTY, is undecidable: Given e which satisfies PROM, determine if $D(M_e) = \emptyset$.

Proof: Assume, BWOC, that PROMEMPTY decidable. We show HALTONZ is undecidable.

- 1. Input x (so we want to know if $M_x(0) \downarrow$).
- 2. CREATE a machine M_e as follows:
 - (a) Input y. If $y \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then go into an infinite loop.
 - (b) If you got here then there exists n such that $y = a^n b^n c^n$. Run $M_x(0)$ for n steps. If it halts then HALT otherwise go into an infinite loop.
- 3. (This is a program comment. Note that 1) $M_x(0) \downarrow$ implies there exists n_o (the number of steps it took to halt) such that

$$\{y: M_e(y) \downarrow\} = \{a^n b^n c^n : n \ge n_o\}$$

which is NOT a CFL.

2) $M_x(0) \uparrow$ implies that $D(M_e) = \emptyset$.

4. Note that either $D(M_e) = \emptyset$ or $D(M_e)$ is NOT a CFL. Hence *e* satisfies PROM. Since PROMEMPTY is decidable we can determine if $D(M_e) = \emptyset$. If $D(M_e) = \emptyset$ then $e \notin HALTONZ$, so output NO. If $D(M_e) \neq \emptyset$ then $e \in HALTONZ$, so output YES.

3 Main Theorem

Def 3.1 The CFG-COMP problem is as follows. Given a CFG G, determine if L(G) is CFL.

Theorem 3.2 CFG-COMP is undecidable.

Proof:

Assume, by way of contradiction, that CFG-COMP is solvable. We use this to show that PROMEMPTY is decidable.

- 1. Input e
- 2. Construct a CFG G_1 that generates the COMPLEMENT of strings of the form START CONFIG of M_e $(w \$ w^R)^*$ END CONFIG OF M_e .
- 3. Construct a CFG G_2 that generates the COMPLEMENT of strings of the form

$$C_1 \$ C_1 \$ C_2 \$ C_2 \$ \cdots \$ C_L \$ C_L^R$$

where C_{i+1} is the next config after C_i .

4. Using G_1 and G_2 (easily) construct a CFG G such that

$$L(G) = L(G_1) \cup L(G_2)$$

 (This is a program comment. Look at

$$\overline{L(G)} = \overline{L(G_1) \cup L(G_2)} = \overline{L(G_1)} \cap \overline{L(G_2)}$$

This is the set of all strings that represent accepting computations of M_e .

We were promised that $D(M_e)$ was either empty or NOT a CFL.

If $D(M_e) = \emptyset$ then $\overline{L(G)} = \emptyset$ and hence a CFL.

If $D(M_e)$ is NOT a CFL, then, by Lemma 2.1, $\overline{L(G)}$ is not a CFL.)

Since CFG-COMP is decidable we can determine $\overline{L(G)}$ is a CFL. If the answer is YES then $D(M_e) = \emptyset$ so we output EMPTY. If the answer is NO then $D(M_e)$ is NOT CFL so we output NOT CFL.