BILL AND NATHAN START RECORDING

Problem 2 on the HW

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The Problem

In this problem $\Sigma = \{a, b, c\}$. Let *L* be the set of all *w* such that the following hold:

(ロト (個) (E) (E) (E) (E) のへの

The Problem

In this problem $\Sigma = \{a, b, c\}$. Let *L* be the set of all *w* such that the following hold:

- ▶ $\#_a(w) \equiv 1 \pmod{3}$, AND
- ▶ $\#_b(w) \equiv 2 \pmod{4}$, AND
- $\blacktriangleright \#_c(w) \equiv 3 \pmod{5}.$

The Problem

In this problem $\Sigma = \{a, b, c\}$. Let *L* be the set of all *w* such that the following hold:

- $\#_a(w) \equiv 1 \pmod{3}$, AND
- ▶ $\#_b(w) \equiv 2 \pmod{4}$, AND
- $\blacktriangleright \#_c(w) \equiv 3 \pmod{5}.$

Write a DFA for *L* in table form. Give Q, δ, s, F . (We already know Σ .)

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

$$Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$$

 $s = (0, 0, 0)$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$$

s = (0,0,0)
$$F = \{(1,2,3)\}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$\begin{aligned} &Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\} \\ &s = (0, 0, 0) \\ &F = \{(1, 2, 3)\}. \end{aligned}$$

Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you

*ロト *昼 * * ミ * ミ * ミ * のへぐ

wrote out all 180 transitions in the table.

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) $F = \{(1, 2, 3)\}.$ Since there are 3 × 4 × 5 = 60 states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

ション ふぼう メリン メリン しょうくしゃ

You can write the table with 3 transitions using algebra.

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) $F = \{(1, 2, 3)\}.$ Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all $0 \le i \le 2$, $0 \le j \le 3$, $0 \le k \le 5$:

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}.

Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all $0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$: $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}.

Since there are $3\times 4\times 5=60$ states and $|\Sigma|=3,$ some of you wrote out all 180 transitions in the table.

ション ふぼう メリン メリン しょうくしゃ

You can write the table with 3 transitions using algebra.

For all
$$0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$$
:
 $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$
 $\delta((i, j, k), b) = (i, j + 1 \pmod{4}, k)$

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}. Since there are 2 × 4 × 5 = 60 states and |\S| = 2 some i

Since there are $3\times 4\times 5=60$ states and $|\Sigma|=3,$ some of you wrote out all 180 transitions in the table.

ション ふぼう メリン メリン しょうくしゃ

You can write the table with 3 transitions using algebra.

For all
$$0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$$
:
 $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$
 $\delta((i, j, k), b) = (i, j + 1 \pmod{4}, k)$
 $\delta((i, j, k), c) = (i, j, k + 1 \pmod{5})$

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}.

Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

ション ふぼう メリン メリン しょうくしゃ

You can write the table with 3 transitions using algebra.

For all
$$0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$$
:
 $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$
 $\delta((i, j, k), b) = (i, j + 1 \pmod{4}, k)$
 $\delta((i, j, k), c) = (i, j, k + 1 \pmod{5})$

In the future do these problems the easy way.