CFGs For Finite Unary Sets

▲□▶▲□▶★国▶★国▶ ■ のへで

Where this Talk Came From

This talk is based on the paper Simulating Finite Automata with Context-Free Grammars by Domaratzki, Pighizzini, Shallit. Information Processing Letters, Volume 84, 2002,339-344.

<ロト < 課 > < 注 > < 注 > 注 の < で</p>

1) We redefine Chomsky Normal Form just for these slides

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

 $A \rightarrow BCD$

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

- $A \rightarrow BCD$
- $A \rightarrow BC$

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

- $A \rightarrow BCD$
- $A \rightarrow BC$
- $A \rightarrow \sigma$

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

- $A \rightarrow BCD$
- $A \rightarrow BC$
- $A \rightarrow \sigma$
- $A \rightarrow e$

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- $A \rightarrow BCD$
- $A \rightarrow BC$
- $A \rightarrow \sigma$
- $A \rightarrow e$

2) CNFG means Chomsky Normal Form Grammar

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- $A \rightarrow BCD$
- $A \rightarrow BC$
- $A \rightarrow \sigma$
- $A \rightarrow e$
- 2) CNFG means Chomsky Normal Form Grammar
- 3) Our concern **is not** the number of rules.

1) We redefine Chomsky Normal Form just for these slides A grammar is in **Chomsky Normal Form** if the rules are of the following forms.

ション ふゆ アメビア メロア しょうくしゃ

- $A \rightarrow BCD$
- $A \rightarrow BC$
- $A \rightarrow \sigma$
- $A \rightarrow e$
- 2) CNFG means Chomsky Normal Form Grammar
- 3) Our concern **is not** the number of rules.
- 4) Our concern is the number of nonterminals (NTs).

Why The Change in Chomsky Normal Form?

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

Why The Change in Chomsky Normal Form?

1) The CFG I want to present is much easier educationally if I allow a few other types of rules.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Why The Change in Chomsky Normal Form?

1) The CFG I want to present is much easier educationally if I allow a few other types of rules.

2) Towards the end of the talk I will tell you what the results are for the real Chomsky Normal Form.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Goal: Small CFG for $A \subseteq \{e,a,a^2,a^3,\ldots,a^n\}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Goal: Small CFG for $A \subseteq \{e,a,a^2,a^3,\ldots,a^n\}$

Plan

Goal: Small CFG for $A \subseteq \{e,a,a^2,a^3,\ldots,a^n\}$

Plan 1) CNFG for $\{e, a, a^2, a^3, \dots, a^{124}\}$ with 16 NT's.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Goal: Small CFG for $A \subseteq \{e, a, a^2, a^3, \dots, a^n\}$

Plan 1) CNFG for $\{e, a, a^2, a^3, ..., a^{124}\}$ with 16 NT's. 2) $\forall A \subseteq \{e, a, a^2, a^3, ..., a^{124}\} \exists a CNFG with 16 NT's.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Goal: Small CFG for $A \subseteq \{e, a, a^2, a^3, \dots, a^n\}$

Plan

- 1) CNFG for $\{e, a, a^2, a^3, \dots, a^{124}\}$ with 16 NT's.
- 2) $\forall A \subseteq \{e, a, a^2, a^3, \dots, a^{124}\} \exists a \text{ CNFG with 16 NT's.}$
- 3) Same technique: $\forall A \subseteq \{e, a, a^2, a^3, \dots, a^n\} \exists a CNFG with <math>O(n^{1/3})$ NT's.

ション ふぼう メリン メリン しょうくしゃ

Goal: Small CFG for $A \subseteq \{e, a, a^2, a^3, \dots, a^n\}$

Plan

- 1) CNFG for $\{e, a, a^2, a^3, \dots, a^{124}\}$ with 16 NT's.
- 2) $\forall A \subseteq \{e, a, a^2, a^3, \dots, a^{124}\} \exists a CNFG with 16 NT's.$
- 3) Same technique: $\forall A \subseteq \{e, a, a^2, a^3, \dots, a^n\} \exists a CNFG with <math>O(n^{1/3})$ NT's.
- 4) Does $\exists A \subseteq \{e, a, a^2, a^3, \dots, a^n\}$ such that every CNFG for A has $\Omega(n^{1/3})$ NT's?

ション ふゆ アメリア メリア しょうくしゃ

Plan

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Plan

- 1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.
- 2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.
- 3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.

3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \leq m \leq 124, \exists 0 \leq i, j, k \leq 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.

3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \leq m \leq 124, \exists 0 \leq i, j, k \leq 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.

3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \le m \le 124, \exists 0 \le i, j, k \le 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

 $20 = 1 \times 0 + 5 \times 4 + 25 \times 0.$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

- 2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.
- 3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \leq m \leq 124, \exists 0 \leq i, j, k \leq 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

 $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \ S \rightarrow E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.

3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \leq m \leq 124, \exists 0 \leq i, j, k \leq 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples: $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \ S \rightarrow E_0F_4F_0 \Rightarrow a^0a^{5\times4}a^{25\times0} = a^{20}.$

 $49 = 1 \times 4 + 5 \times 4 + 25 \times 1.$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

- 2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.
- 3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \le m \le 124, \exists 0 \le i, j, k \le 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

 $\begin{array}{l} 20=1\times0+5\times4+25\times0, \ S\rightarrow E_0F_4F_0\Rightarrow a^0a^{5\times4}a^{25\times0}=a^{20},\\ 49=1\times4+5\times4+25\times1, \ S\rightarrow E_4F_4G_1\Rightarrow a^4a^{5\times4}a^{25\times1}=a^{49}. \end{array}$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

- 2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.
- 3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \le m \le 124, \exists 0 \le i, j, k \le 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

 $\begin{array}{l} 20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \ S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}. \\ 49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \ S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}. \\ 87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \end{array}$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

- 2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.
- 3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \leq m \leq 124, \exists 0 \leq i, j, k \leq 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

 $\begin{array}{l} 20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \ S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}. \\ 49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \ S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}. \\ 87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \ S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}. \end{array}$

Plan

1) Find rules and NTs E_0, E_1, E_2, E_3, E_4 , such that $L(E_i) = \{a^i\}$.

- 2) Find rules and NT's F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.
- 3) Find rules and NT's G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall 0 \leq m \leq 124, \exists 0 \leq i, j, k \leq 4 \text{ such that, } a^m = L(E_i)L(F_j)L(G_k).$ Examples:

 $\begin{array}{l} 20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \ S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.\\ 49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \ S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.\\ 87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \ S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.\\ \mbox{Key We are writing the numbers } 0 \le m \le 124 \ \mbox{in base 5.} \end{array}$

How to Use $\boldsymbol{E}_i, \boldsymbol{F}_j, \boldsymbol{G}_k$

- * ロ > * 週 > * 注 > * 注 > ・ 注 - の < @
1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$.

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$.

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$. 3) G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$. 3) G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall \ 0 \leq i, j, k \leq 4$ add the rule

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$. 3) G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall \ 0 \leq i, j, k \leq 4$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$. 3) G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall \ 0 \leq i, j, k \leq 4$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

Clearly $L(S) = \{a^0, ..., a^{124}\}$ and *G* has 16 NT's.

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$. 3) G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall \ 0 \leq i, j, k \leq 4$ add the rule

$$S \to E_i F_j G_k$$
.

Clearly $L(S) = \{a^0, ..., a^{124}\}$ and *G* has 16 NT's.

Still need to describe the rules for E_i , F_j , G_k .

1) E_0, E_1, E_2, E_3, E_4 such that $L(E_i) = \{a^i\}$. 2) F_0, F_1, F_2, F_3, F_4 such that $L(F_i) = \{a^{5i}\}$. 3) G_0, G_1, G_2, G_3, G_4 such that $L(G_i) = \{a^{25i}\}$.

 $\forall \ 0 \leq i, j, k \leq 4$ add the rule

$$S \to E_i F_j G_k$$
.

Clearly $L(S) = \{a^0, ..., a^{124}\}$ and *G* has 16 NT's.

Still need to describe the rules for E_i , F_j , G_k .

One more point to make before we go to E_i , F_j , G_k .

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

To get *a*⁸⁷:

To get a^{87} :

 $87 = 1 \times 2 + 5 \times 2 + 25 \times 3.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

To get a^{87} : $87 = 1 \times 2 + 5 \times 2 + 25 \times 3$. So $a^{87} = a^2 a^{5 \times 2} a^{25 \times 3}$.

To get a^{87} : 87 = 1 × 2 + 5 × 2 + 25 × 3. So $a^{87} = a^2 a^{5 \times 2} a^{25 \times 3}$.

 $S \rightarrow E_2 F_2 G_3 \Rightarrow a^2 a^{10} a^{75}$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

To get
$$a^{87}$$
:
 $87 = 1 \times 2 + 5 \times 2 + 25 \times 3$. So $a^{87} = a^2 a^{5 \times 2} a^{25 \times 3}$.
 $S \to E_2 F_2 G_3 \Rightarrow a^2 a^{10} a^{75}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Keys For Later

To get
$$a^{87}$$
:
87 = 1 × 2 + 5 × 2 + 25 × 3. So $a^{87} = a^2 a^{5 \times 2} a^{25 \times 3}$.

$$S \rightarrow E_2 F_2 G_3 \Rightarrow a^2 a^{10} a^{75}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Keys For Later

1) This is the **only** way to get a^{87}

To get
$$a^{87}$$
:
87 = 1 × 2 + 5 × 2 + 25 × 3. So $a^{87} = a^2 a^{5 \times 2} a^{25 \times 3}$.

$$S \rightarrow E_2 F_2 G_3 \Rightarrow a^2 a^{10} a^{75}$$

Keys For Later

1) This is the **only** way to get a^{87} 2) If the rule $S \rightarrow E_2 F_2 G_3$ is removed then the **only** string that is no longer generated is a^{87} .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト 一 国 … の Q ()

$$E_0 \rightarrow e$$
 $L(E_0) = \{e\}$

$$egin{array}{lll} E_0
ightarrow e & L(E_0) = \{e\} \ E_1
ightarrow a & L(E_1) = \{a\} \end{array}$$

$$\begin{array}{ll} E_0 \to e & L(E_0) = \{e\} \\ E_1 \to a & L(E_1) = \{a\} \\ E_2 \to E_1 E_1 & L(E_2) = \{aa\} \\ E_3 \to E_2 E_1 & L(E_3) = \{aaa\} \end{array}$$

$$\begin{array}{ll} E_{0} \to e & L(E_{0}) = \{e\} \\ E_{1} \to a & L(E_{1}) = \{a\} \\ E_{2} \to E_{1}E_{1} & L(E_{2}) = \{aa\} \\ E_{3} \to E_{2}E_{1} & L(E_{3}) = \{aaa\} \\ E_{4} \to E_{3}E_{1} & L(E_{4}) = \{aaaa\} \end{array}$$

- ▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$F_0 \rightarrow e$$
 $L(F_0) = \{e\}.$

$$\begin{array}{ll} F_0 \rightarrow e & L(F_0) = \{e\}.\\ F_1 \rightarrow E_4 E_1 & L(F_1) = \{a^5\}. \end{array}$$

$$\begin{array}{ll} F_0 \to e & L(F_0) = \{e\}.\\ F_1 \to E_4 E_1 & L(F_1) = \{a^5\}.\\ F_2 \to F_1 F_1 & L(F_2) = \{a^{10}\}. \end{array}$$

$$\begin{array}{ll} F_0 \to e & L(F_0) = \{e\}. \\ F_1 \to E_4 E_1 & L(F_1) = \{a^5\}. \\ F_2 \to F_1 F_1 & L(F_2) = \{a^{10}\}. \\ F_3 \to F_2 F_1 & L(F_3) = \{a^{15}\}. \end{array}$$

$$\begin{array}{ll} F_0 \to e & L(F_0) = \{e\}. \\ F_1 \to E_4 E_1 & L(F_1) = \{a^5\}. \\ F_2 \to F_1 F_1 & L(F_2) = \{a^{10}\}. \\ F_3 \to F_2 F_1 & L(F_3) = \{a^{15}\}. \\ F_4 \to F_3 F_1 & L(F_4) = \{a^{20}\}. \end{array}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の��

$$G_0 \rightarrow e$$
 $L(G_0) = \{e\}.$

$$\begin{array}{ll} G_0 \rightarrow e & L(G_0) = \{e\}.\\ G_1 \rightarrow F_4 F_1 & L(G_1) = \{a^{25}\}. \end{array}$$

$$\begin{array}{ll} G_0 \to e & L(G_0) = \{e\}. \\ G_1 \to F_4 F_1 & L(G_1) = \{a^{25}\}. \\ G_2 \to G_1 G_1 & L(G_2) = \{a^{50}\}. \end{array}$$

$$\begin{array}{ll} G_0 \to e & L(G_0) = \{e\}. \\ G_1 \to F_4 F_1 & L(G_1) = \{a^{25}\}. \\ G_2 \to G_1 G_1 & L(G_2) = \{a^{50}\}. \\ G_3 \to G_2 G_1 & L(G_3) = \{a^{75}\}. \end{array}$$

$$\begin{array}{ll} G_0 \to e & L(G_0) = \{e\}. \\ G_1 \to F_4 F_1 & L(G_1) = \{a^{25}\}. \\ G_2 \to G_1 G_1 & L(G_2) = \{a^{50}\}. \\ G_3 \to G_2 G_1 & L(G_3) = \{a^{75}\}. \\ G_4 \to G_3 G_1 & L(G_4) = \{a^{100}\}. \end{array}$$

Done and Recap

The CNFG Grammar is:

Done and Recap

The CNFG Grammar is:

1) The E_i 's, F_j 's, and G_k 's as described above.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ
The CNFG Grammar is:

1) The E_i 's, F_i 's, and G_k 's as described above.

2) For all $0 \le i, j, k \le 4$ the rule $S \to E_i F_j G_k$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

The CNFG Grammar is:

1) The E_i 's, F_i 's, and G_k 's as described above.

2) For all $0 \leq i, j, k \leq 4$ the rule $S \rightarrow E_i F_j G_k$.

The following are true:

The CNFG Grammar is:

- 1) The E_i 's, F_j 's, and G_k 's as described above.
- 2) For all $0 \leq i, j, k \leq 4$ the rule $S \rightarrow E_i F_j G_k$.

ション ふゆ アメリア メリア しょうくしゃ

The following are true:

1) The Grammar generates $\{e, a, \ldots, a^{124}\}$.

The CNFG Grammar is:

- 1) The E_i 's, F_j 's, and G_k 's as described above.
- 2) For all $0 \leq i, j, k \leq 4$ the rule $S \rightarrow E_i F_j G_k$.

The following are true:

1) The Grammar generates $\{e, a, \ldots, a^{124}\}$.

2) The Grammar has 16 NT's.

The CNFG Grammar is:

- 1) The E_i 's, F_j 's, and G_k 's as described above.
- 2) For all $0 \le i, j, k \le 4$ the rule $S \to E_i F_j G_k$.

The following are true:

- 1) The Grammar generates $\{e, a, \ldots, a^{124}\}$.
- 2) The Grammar has 16 NT's.
- 3) Can modify the Grammar to omit any set of strings (next slide).

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○へ⊙

Let
$$A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Let
$$A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$$

20 = 1 × 0 + 5 × 4 + 25 × 0.

Let
$$A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$$

 $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1.$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3.$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e, a, a^2, \ldots, a^{124}\}$$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e,a,a^2,\ldots,a^{124}\}$$

ション ふゆ アメリア メリア しょうくしゃ

and remove

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e,a,a^2,\ldots,a^{124}\}$$

and **remove** $S \rightarrow E_0 F_4 G_0$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e, a, a^2, \ldots, a^{124}\}$$

and remove

 $S
ightarrow E_0 F_4 G_0$ $S
ightarrow E_4 F_4 G_1$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e, a, a^2, \dots, a^{124}\}$$

and remove

 $S
ightarrow E_0 F_4 G_0$ $S
ightarrow E_4 F_4 G_1$ $S
ightarrow E_2 F_2 G_3$

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e, a, a^2, \dots, a^{124}\}$$

and remove

 $S
ightarrow E_0 F_4 G_0 \ S
ightarrow E_4 F_4 G_1 \ S
ightarrow E_2 F_2 G_3$

We get a CNFG for A with 16 NTs.

Let $A = \{e, a, a^2, \dots, a^{124}\} - \{a^{20}, a^{49}, a^{87}\}$ $20 = 1 \times 0 + 5 \times 4 + 25 \times 0. \quad S \to E_0 F_4 F_0 \Rightarrow a^0 a^{5 \times 4} a^{25 \times 0} = a^{20}.$ $49 = 1 \times 4 + 5 \times 4 + 25 \times 1. \quad S \to E_4 F_4 G_1 \Rightarrow a^4 a^{5 \times 4} a^{25 \times 1} = a^{49}.$ $87 = 1 \times 2 + 5 \times 2 + 25 \times 3. \quad S \to E_2 F_2 G_3 \Rightarrow a^2 a^{5 \times 2} a^{25 \times 3} = a^{87}.$

To get a CNFG for A take the CNFG we described for

$$\{e, a, a^2, \dots, a^{124}\}$$

and remove

- $S
 ightarrow E_0 F_4 G_0$ $S
 ightarrow E_4 F_4 G_1$
- $S \rightarrow E_2 F_2 G_3$

We get a CNFG for A with 16 NTs.

This trick works for any subset of $\{e, a, a^2, \ldots, a^{124}\}$.

Theorem about $A \subseteq \{e, a, a^2, \ldots, a^{124}\}$

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

Theorem about $A \subseteq \{e, a, a^2, \ldots, a^{124}\}$

Thm For all $A \subseteq \{e, a, a^2, \dots, a^{124}\}$ there is a CNFG with 16 NTs.

General Theorem About $A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\}$

General Theorem About $A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

We will prove the following in a similar manner

General Theorem About $A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\}$

We will prove the following in a similar manner

Thm Let $t \in \mathbb{N}$. For all $A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\}$ there is a CNFG with 3t + 1 NTs.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Small CFG for $\{e,a,a^2,\ldots,a^{t^3-1}\}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Small CFG for $\{e,a,a^2,\ldots,a^{t^3-1}\}$

Plan

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Small CFG for $\{e, a, a^2, \dots, a^{t^3-1}\}$

Plan

1) Find rules and NTs E_0, \ldots, E_{t-1} , such that $L(E_i) = \{a^i\}$.

Small CFG for $\{e, a, a^2, \ldots, a^{t^3-1}\}$

Plan

- 1) Find rules and NTs E_0, \ldots, E_{t-1} , such that $L(E_i) = \{a^i\}$.
- 2) Find rules and NT's F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Small CFG for $\{e, a, a^2, \ldots, a^{t^3-1}\}$

Plan

- 1) Find rules and NTs E_0, \ldots, E_{t-1} , such that $L(E_i) = \{a^i\}$.
- 2) Find rules and NT's F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
- 3) Find rules and NT's G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

How to Use $\boldsymbol{E}_i, \boldsymbol{F}_j, \boldsymbol{G}_k$

- * ロ > * 週 > * 注 > * 注 > ・ 注 - の < @

How to Use E_i, F_j, G_k

1) E_0, \ldots, E_{t-1} such that $L(E_i) = \{a^i\}$.

How to Use E_i, F_j, G_k

1) E_0, \ldots, E_{t-1} such that $L(E_i) = \{a^i\}$. 2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.

How to Use $\boldsymbol{E}_i, \boldsymbol{F}_j, \boldsymbol{G}_k$

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

How to Use E_i, F_j, G_k

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 $\forall \ 0 \leq i, j, k \leq t-1$ add the rule

How to Use E_i, F_j, G_k

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

 $\forall \ 0 \leq i, j, k \leq t-1$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの
1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

 $orall \ 0 \leq i,j,k \leq t-1$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Let $0 \le n \le t^3 - 1$.

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

 $\forall \ 0 \leq i, j, k \leq t-1$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

・ロト・日本・モト・モト・モー うへぐ

Let $0 \le n \le t^3 - 1$. We show why $S \Rightarrow a^n$.

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^{2i}}\}$.

 $orall \ 0 \leq i,j,k \leq t-1$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

Let $0 \le n \le t^3 - 1$. We show why $S \Rightarrow a^n$. Use base t: $n = n_0 + tn_1 + t^2n_2$ where $n_0, n_1, n_2 \in \{0, \dots, t-1\}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^{2i}}\}$.

 $orall \ 0 \leq i,j,k \leq t-1$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

Let $0 \le n \le t^3 - 1$. We show why $S \Rightarrow a^n$. Use base t: $n = n_0 + tn_1 + t^2n_2$ where $n_0, n_1, n_2 \in \{0, \dots, t-1\}$.

$$S \rightarrow E_{n_0}F_{n_1}G_{n_2} \Rightarrow a^{n_0}a^{tn_1}a^{t^2n_2} = a^n$$

1)
$$E_0, \ldots, E_{t-1}$$
 such that $L(E_i) = \{a^i\}$.
2) F_0, \ldots, F_{t-1} such that $L(F_i) = \{a^{ti}\}$.
3) G_0, \ldots, G_{t-1} such that $L(G_i) = \{a^{t^2i}\}$.

 $orall \ 0 \leq i,j,k \leq t-1$ add the rule

$$S \rightarrow E_i F_j G_k$$
.

Let $0 \le n \le t^3 - 1$. We show why $S \Rightarrow a^n$. Use base t: $n = n_0 + tn_1 + t^2n_2$ where $n_0, n_1, n_2 \in \{0, \dots, t-1\}$.

$$S
ightarrow E_{n_0}F_{n_1}G_{n_2} \Rightarrow a^{n_0}a^{tn_1}a^{t^2n_2} = a^n.$$

ション ふゆ アメビア メロア しょうくしゃ

Still need to describe the rules for E_i , F_j , G_k .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◆○▶

$E_0 \rightarrow e$ $L(E_0) = \{e\}$

- イロト イロト イヨト イヨト ヨー のへぐ

$$\begin{array}{ll} E_0 \rightarrow e & \quad L(E_0) = \{e\} \\ E_1 \rightarrow a & \quad L(E_1) = \{a\} \end{array}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\begin{array}{ll} E_0 \to e & L(E_0) = \{e\} \\ E_1 \to a & L(E_1) = \{a\} \\ E_2 \to E_1 E_1 & L(E_2) = \{aa\} \\ E_3 \to E_2 E_1 & L(E_3) = \{aaa\} \end{array}$$

$$\begin{array}{lll} E_0 \rightarrow e & L(E_0) = \{e\} \\ E_1 \rightarrow a & L(E_1) = \{a\} \\ E_2 \rightarrow E_1 E_1 & L(E_2) = \{aa\} \\ E_3 \rightarrow E_2 E_1 & L(E_3) = \{aaa\} \\ \vdots & \vdots & \vdots \end{array}$$

$$E_{0} \rightarrow e \qquad L(E_{0}) = \{e\}$$

$$E_{1} \rightarrow a \qquad L(E_{1}) = \{a\}$$

$$E_{2} \rightarrow E_{1}E_{1} \qquad L(E_{2}) = \{aa\}$$

$$E_{3} \rightarrow E_{2}E_{1} \qquad L(E_{3}) = \{aaa\}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$E_{t-1} \rightarrow E_{t-2}E_{1} \qquad L(E_{t-1}) = \{a^{t-1}\}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◆○▶

$$F_0 \rightarrow e$$
 $L(F_0) = \{e\}.$

$$F_0 \to e$$
 $L(F_0) = \{e\}.$
 $F_1 \to E_{t-1}E_1$ $L(F_1) = \{a^t\}.$

$$\begin{array}{ll} F_0 \to e & L(F_0) = \{e\}.\\ F_1 \to E_{t-1}E_1 & L(F_1) = \{a^t\}.\\ F_2 \to F_1F_1 & L(F_2) = \{a^{2t}\}. \end{array}$$

$$\begin{array}{ll} F_0 \to e & L(F_0) = \{e\}. \\ F_1 \to E_{t-1}E_1 & L(F_1) = \{a^t\}. \\ F_2 \to F_1F_1 & L(F_2) = \{a^{2t}\}. \\ F_3 \to F_2F_1 & L(F_3) = \{a^{3t}\}. \end{array}$$

$$\begin{array}{ll} F_0 \to e & L(F_0) = \{e\}. \\ F_1 \to E_{t-1}E_1 & L(F_1) = \{a^t\}. \\ F_2 \to F_1F_1 & L(F_2) = \{a^{2t}\}. \\ F_3 \to F_2F_1 & L(F_3) = \{a^{3t}\}. \\ \vdots & \vdots & \vdots \end{array}$$

$$F_{0} \rightarrow e \qquad L(F_{0}) = \{e\}.$$

$$F_{1} \rightarrow E_{t-1}E_{1} \qquad L(F_{1}) = \{a^{t}\}.$$

$$F_{2} \rightarrow F_{1}F_{1} \qquad L(F_{2}) = \{a^{2t}\}.$$

$$F_{3} \rightarrow F_{2}F_{1} \qquad L(F_{3}) = \{a^{3t}\}.$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$F_{t-1} \rightarrow F_{t-2}F_{1} \qquad L(F_{t-1}) = \{a^{(t-1)t}\}.$$

$$G_0, \ldots, G_{t-1}$$
 for $\{e, a^{t^2}, a^{2t^2}, \ldots, a^{(t-1)t^2}\}$

$$G_0 \rightarrow e$$
 $L(G_0) = \{e\}.$

・ロト・西・・日・・日・ 日・ シック

$$G_0, \ldots, G_{t-1}$$
 for $\{e, a^{t^2}, a^{2t^2}, \ldots, a^{(t-1)t^2}\}$

$$G_0 \to e$$
 $L(G_0) = \{e\}.$
 $G_1 \to F_{t-1}F_1$ $L(G_1) = \{a^{t^2}\}.$

・ロト・雪・・雪・・雪・・白・

$$G_0, \ldots, G_{t-1}$$
 for $\{e, a^{t^2}, a^{2t^2}, \ldots, a^{(t-1)t^2}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\begin{array}{ll} G_0 \to e & L(G_0) = \{e\}. \\ G_1 \to F_{t-1}F_1 & L(G_1) = \{a^{t^2}\}. \\ G_2 \to G_1G_1 & L(G_2) = \{a^{2t^2}\}. \end{array}$$

$$G_0, \ldots, G_{t-1}$$
 for $\{e, a^{t^2}, a^{2t^2}, \ldots, a^{(t-1)t^2}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\begin{array}{ll} G_0 \to e & L(G_0) = \{e\}. \\ G_1 \to F_{t-1}F_1 & L(G_1) = \{a^{t^2}\}. \\ G_2 \to G_1G_1 & L(G_2) = \{a^{2t^2}\}. \\ G_3 \to G_2G_1 & L(G_3) = \{a^{3t^2}\}. \end{array}$$

$$G_0, \ldots, G_{t-1}$$
 for $\{e, a^{t^2}, a^{2t^2}, \ldots, a^{(t-1)t^2}\}$

$$G_{0} \to e \qquad \mathcal{L}(G_{0}) = \{e\}.$$

$$G_{1} \to F_{t-1}F_{1} \qquad \mathcal{L}(G_{1}) = \{a^{t^{2}}\}.$$

$$G_{2} \to G_{1}G_{1} \qquad \mathcal{L}(G_{2}) = \{a^{2t^{2}}\}.$$

$$G_{3} \to G_{2}G_{1} \qquad \mathcal{L}(G_{3}) = \{a^{3t^{2}}\}.$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$G_{t-1} \to G_{t-2}G_{1} \qquad \mathcal{L}(G_{t-1}) = \{a^{(t-1)t^{2}}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The CNFG Grammar is:

The CNFG Grammar is:

1) The E_i 's, F_j 's, and G_k 's as described above.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The CNFG Grammar is:

1) The E_i 's, F_i 's, and G_k 's as described above.

2) For all $0 \leq i, j, k \leq t - 1$ the rule $S \rightarrow E_i F_j G_k$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

The CNFG Grammar is:

1) The E_i 's, F_i 's, and G_k 's as described above.

2) For all $0 \leq i, j, k \leq t - 1$ the rule $S \rightarrow E_i F_j G_k$.

The following are true:

The CNFG Grammar is:

- 1) The E_i 's, F_j 's, and G_k 's as described above.
- 2) For all $0 \le i, j, k \le t 1$ the rule $S \to E_i F_j G_k$.

The following are true:

1) The Grammar generates $\{e, a \dots, a^{t^3-1}\}$.

The CNFG Grammar is:

- 1) The E_i 's, F_j 's, and G_k 's as described above.
- 2) For all $0 \leq i, j, k \leq t 1$ the rule $S \rightarrow E_i F_j G_k$.

The following are true:

- 1) The Grammar generates $\{e, a \dots, a^{t^3-1}\}$.
- 2) The Grammar has 3t + 1 = O(t) NT's.

The CNFG Grammar is:

- 1) The E_i 's, F_j 's, and G_k 's as described above.
- 2) For all $0 \leq i, j, k \leq t 1$ the rule $S \rightarrow E_i F_j G_k$.

The following are true:

- 1) The Grammar generates $\{e, a \dots, a^{t^3-1}\}$.
- 2) The Grammar has 3t + 1 = O(t) NT's.
- 3) Can modify the Grammar to omit any set of strings (next slide).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◆○▶

This is very similar to how we omitted strings from $A = \{e, a, a^2, \dots, a^{124}\}.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

This is very similar to how we omitted strings from $A = \{e, a, a^2, \dots, a^{124}\}.$

To omit $a^{n_0+tn_1+t^2n_2}$

This is very similar to how we omitted strings from $A = \{e, a, a^2, \dots, a^{124}\}.$

To omit $a^{n_0+tn_1+t^2n_2}$

remove the rule $S \rightarrow E_{n_0}F_{n_1}G_{n_2}$.
Example of $A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\}$

This is very similar to how we omitted strings from $A = \{e, a, a^2, \dots, a^{124}\}.$

To omit $a^{n_0+tn_1+t^2n_2}$

remove the rule $S \rightarrow E_{n_0}F_{n_1}G_{n_2}$. To omit many strings, remove many rules of the form $S \rightarrow$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We have shown the following:

We have shown the following: Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a \text{ CNFG with } 3t + 1 \text{ NTs.}$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We have shown the following: Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a \text{ CNFG with } 3t + 1 \text{ NTs.}$

This theorem is oddly written.

We have shown the following: Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a \text{ CNFG with } 3t + 1 \text{ NTs.}$

ション ふゆ アメビア メロア しょうくしゃ

This theorem is oddly written. We really want to know about

We have shown the following: Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a \text{ CNFG with } 3t + 1 \text{ NTs.}$

This theorem is oddly written. We really want to know about

$$A \subseteq \{e, a, a^2, \ldots, a^n\}.$$

We have shown the following: Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a \text{ CNFG with } 3t + 1 \text{ NTs.}$

This theorem is oddly written. We really want to know about

$$A\subseteq \{e,a,a^2,\ldots,a^n\}.$$

ション ふゆ アメビア メロア しょうくしゃ

Let *t* be such that $n \sim t^3$. Then we get:

We have shown the following: Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a \text{ CNFG with } 3t + 1 \text{ NTs.}$

This theorem is oddly written. We really want to know about

$$A\subseteq \{e,a,a^2,\ldots,a^n\}.$$

Let *t* be such that $n \sim t^3$. Then we get:

Thm $\forall A \subseteq \{e, a, a^2, \dots, a^n\} \exists a \text{ CNFG with } O(n^{1/3}) \text{ NTs.}$

We state without proof what is known about Real Chomsky Normal Form.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We state without proof what is known about Real Chomsky Normal Form. Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a (real) CNFG with 4t + 1 NTs.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We state without proof what is known about Real Chomsky Normal Form. Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a (real) CNFG with <math>4t + 1$ NTs.

Note The proof of the Real CNF theorem is our proof plus twenty more slides.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We state without proof what is known about Real Chomsky Normal Form. Thm $\forall A \subseteq \{e, a, a^2, \dots, a^{t^3-1}\} \exists a (real) CNFG with <math>4t + 1$ NTs.

Note The proof of the Real CNF theorem is our proof plus twenty more slides.

Thm $\forall A \subseteq \{e, a, a^2, \dots, a^n\} \exists a \text{ (real) CNFG with } O(n^{1/3}) \text{ NTs.}$

A D > A P > A E > A E > A D > A Q A

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

Note From here on, CNFG means the real definition of CNF.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Note From here on, CNFG means the real definition of CNF. **Note** All CNFG's mentioned generate *A*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Note From here on, CNFG means the real definition of CNF. **Note** All CNFG's mentioned generate *A*. **Vote**

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Note From here on, CNFG means the real definition of CNF. **Note** All CNFG's mentioned generate *A*. **Vote**

 $\forall A \subseteq \{e, a, \dots, a^n\} \exists a \text{ CNFG with } O(n^{1/3-\epsilon}) \text{ NTs, } \epsilon = \frac{1}{10^{40}}.$

Note From here on, CNFG means the real definition of CNF. **Note** All CNFG's mentioned generate *A*. **Vote**

 $\forall A \subseteq \{e, a, \dots, a^n\} \exists a \text{ CNFG with } O(n^{1/3-\epsilon}) \text{ NTs, } \epsilon = \frac{1}{10^{40}}.$ $\forall A \subseteq \{e, a, \dots, a^n\} \exists a \text{ CNFG with } O(n^{1/4}) \text{ NTs.}$

Note From here on, CNFG means the real definition of CNF. **Note** All CNFG's mentioned generate *A*. **Vote**

 $\begin{array}{l} \forall A \subseteq \{e, a, \ldots, a^n\} \exists \text{ a CNFG with } O(n^{1/3-\epsilon}) \text{ NTs, } \epsilon = \frac{1}{10^{40}}. \\ \forall A \subseteq \{e, a, \ldots, a^n\} \exists \text{ a CNFG with } O(n^{1/4}) \text{ NTs.} \\ \exists A \subseteq \{e, a, \ldots, a^n\} \text{ all CNFGs have } \Omega(n^{1/3}) \text{ NTs.} \end{array}$

ション ふぼう メリン メリン しょうくしゃ

Thm $\exists A \subseteq \{e, a, \dots, a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, \ldots, a^{n-1}\}$ are there?

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, \ldots, a^{n-1}\}$ are there? 2^n .

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, ..., a^{n-1}\}$ are there? 2^n . How many CFG's have *t* nonterminals?

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, ..., a^{n-1}\}$ are there? 2^n . How many CFG's have *t* nonterminals? How many rules of the form $A \rightarrow BC$ are there?

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, ..., a^{n-1}\}$ are there? 2^{*n*}. How many CFG's have *t* nonterminals? How many rules of the form $A \rightarrow BC$ are there? t^3 .

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, ..., a^{n-1}\}$ are there? 2^n . How many CFG's have *t* nonterminals? How many rules of the form $A \rightarrow BC$ are there? t^3 . How many rules of the form $A \rightarrow \sigma$?

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, ..., a^{n-1}\}$ are there? 2^n . How many CFG's have t nonterminals? How many rules of the form $A \rightarrow BC$ are there? t^3 . How many rules of the form $A \rightarrow \sigma$? O(t).

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, ..., a^{n-1}\}$ are there? 2^n . How many CFG's have t nonterminals? How many rules of the form $A \rightarrow BC$ are there? t^3 . How many rules of the form $A \rightarrow \sigma$? O(t). So there are $\sim t^3 + O(t) \le 2t^3$ possible rules.

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. We choose *t* later.

How many subsets of $\{e, a, \ldots, a^{n-1}\}$ are there? 2^n . How many CFG's have *t* nonterminals? How many rules of the form $A \rightarrow BC$ are there? t^3 . How many rules of the form $A \rightarrow \sigma$? O(t). So there are $\sim t^3 + O(t) \le 2t^3$ possible rules. So there are $\le 2^{2t^3}$ possible CFG's with *t* nonterminals.

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. There are 2^n subsets A.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. There are 2^n subsets A. There are $\leq 2^{t^3+t} \leq 2^{2t^3}$ CNFG's with t NT's.

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. There are 2^n subsets A. There are $\leq 2^{t^3+t} \leq 2^{2t^3}$ CNFG's with t NT's. **IF** there are more $X \subseteq \{e, a, ..., a^n\}$ than CNFG's with t NT's

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. There are 2^n subsets A. There are $\leq 2^{t^3+t} \leq 2^{2t^3}$ CNFG's with t NT's. **IF** there are more $X \subseteq \{e, a, ..., a^n\}$ than CNFG's with t NT's **THEN** $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG of with $\leq t$ NT's.

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall \text{CNFG have } \Omega(n^{1/3}) \text{ NTs.}$ There are 2^n subsets A. There are $\leq 2^{t^3+t} \leq 2^{2t^3} \text{ CNFG's with } t \text{ NT's.}$ IF there are more $X \subseteq \{e, a, ..., a^n\}$ than CNFG's with t NT'sTHEN $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG of with $\leq t \text{ NT's.}$ So IF $2^{2t^3} < 2^n$ THEN $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG that has $\leq t \text{ NT's.}$
Can We Do Better Than $O(n^{1/3})$ NTs?(cont)

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. There are 2^n subsets A. There are $\leq 2^{t^3+t} \leq 2^{2t^3}$ CNFG's with t NT's. IF there are more $X \subseteq \{e, a, ..., a^n\}$ than CNFG's with t NT's THEN $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG of with $\leq t$ NT's. So IF $2^{2t^3} < 2^n$ THEN $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG that has $\leq t$ NT's. Choose $t = 0.5n^{1/3} = \Omega(n^{1/3})$ and we have our theorem.

Can We Do Better Than $O(n^{1/3})$ NTs?(cont)

Thm $\exists A \subseteq \{e, a, ..., a^n\} \forall$ CNFG have $\Omega(n^{1/3})$ NTs. There are 2^n subsets A. There are $\leq 2^{t^3+t} \leq 2^{2t^3}$ CNFG's with t NT's. IF there are more $X \subseteq \{e, a, ..., a^n\}$ than CNFG's with t NT's THEN $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG of with $\leq t$ NT's. So IF $2^{2t^3} < 2^n$ THEN $\exists X \subseteq \{e, a, ..., a^n\}$ with no CNFG that has $\leq t$ NT's. Choose $t = 0.5n^{1/3} = \Omega(n^{1/3})$ and we have our theorem. WE ARE DONE.