
CFGs For Finite Unary
Sets



Where this Talk Came From

This talk is based on the paper
Simulating Finite Automata with Context-Free Grammars by
Domaratzki, Pighizzini, Shallit. Information Processing Letters,
Volume 84, 2002,339-344.



Chomsky Normal Form (Just For These Slides)

1) We redefine Chomsky Normal Form just for these slides
A grammar is in Chomsky Normal Form if the rules are of the
following forms.
A→ BCD
A→ BC
A→ σ
A→ e

2) CNFG means Chomsky Normal Form Grammar

3) Our concern is not the number of rules.
4) Our concern is the number of nonterminals (NTs).
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Why The Change in Chomsky Normal Form?

1) The CFG I want to present is much easier educationally if I
allow a few other types of rules.

2) Towards the end of the talk I will tell you what the results are
for the real Chomsky Normal Form.
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Goal: Small CFG for A ⊆ {e, a, a2, a3, . . . , an}

Plan

1) CNFG for {e, a, a2, a3, . . . , a124} with 16 NT’s.

2) ∀ A ⊆ {e, a, a2, a3, . . . , a124} ∃ a CNFG with 16 NT’s.

3) Same technique: ∀ A ⊆ {e, a, a2, a3, . . . , an} ∃ a CNFG with
O(n1/3) NT’s.

4) Does ∃ A ⊆ {e, a, a2, a3, . . . , an} such that every CNFG for A
has Ω(n1/3) NT’s?
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Goal: Small CFG for Subsets Of {e, a, a2, a3, . . . , a124}

Plan

1) Find rules and NTs E0,E1,E2,E3,E4, such that L(Ei ) = {ai}.
2) Find rules and NT’s F0,F1,F2,F3,F4 such that L(Fi ) = {a5i}.
3) Find rules and NT’s G0,G1,G2,G3,G4 such that L(Gi ) = {a25i}.

∀0 ≤ m ≤ 124, ∃0 ≤ i , j , k ≤ 4 such that, am = L(Ei )L(Fj)L(Gk).

Examples:
20 = 1× 0 + 5× 4 + 25× 0. S → E0F4F0 ⇒ a0a5×4a25×0 = a20.
49 = 1× 4 + 5× 4 + 25× 1. S → E4F4G1 ⇒ a4a5×4a25×1 = a49.
87 = 1× 2 + 5× 2 + 25× 3. S → E2F2G3 ⇒ a2a5×2a25×3 = a87.
Key We are writing the numbers 0 ≤ m ≤ 124 in base 5.
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How to Use Ei,Fj,Gk

1) E0,E1,E2,E3,E4 such that L(Ei ) = {ai}.
2) F0,F1,F2,F3,F4 such that L(Fi ) = {a5i}.
3) G0,G1,G2,G3,G4 such that L(Gi ) = {a25i}.

∀ 0 ≤ i , j , k ≤ 4 add the rule

S → EiFjGk .

Clearly L(S) = {a0, . . . , a124} and G has 16 NT’s.

Still need to describe the rules for Ei , Fj , Gk .

One more point to make before we go to Ei , Fj , Gk .
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An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3.

So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later

1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



An Example and a Point

To get a87:

87 = 1× 2 + 5× 2 + 25× 3. So a87 = a2a5×2a25×3.

S → E2F2G3 ⇒ a2a10a75

Keys For Later
1) This is the only way to get a87

2) If the rule S → E2F2G3 is removed then the only string that is
no longer generated is a87.



E0,E1,E2,E3,E4 for {e, a, a2, a3, a4}

E0 → e L(E0) = {e}
E1 → a L(E1) = {a}
E2 → E1E1 L(E2) = {aa}
E3 → E2E1 L(E3) = {aaa}
E4 → E3E1 L(E4) = {aaaa}
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Done and Recap

The CNFG Grammar is:

1) The Ei ’s, Fj ’s, and Gk ’s as described above.

2) For all 0 ≤ i , j , k ≤ 4 the rule S → EiFjGk .

The following are true:

1) The Grammar generates {e, a, . . . , a124}.
2) The Grammar has 16 NT’s.

3) Can modify the Grammar to omit any set of strings (next slide).
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Example of A ⊆ {e, a, a2, . . . , a124}

Let A = {e, a, a2, . . . , a124} − {a20, a49, a87}
20 = 1× 0 + 5× 4 + 25× 0. S → E0F4F0 ⇒ a0a5×4a25×0 = a20.
49 = 1× 4 + 5× 4 + 25× 1. S → E4F4G1 ⇒ a4a5×4a25×1 = a49.
87 = 1× 2 + 5× 2 + 25× 3. S → E2F2G3 ⇒ a2a5×2a25×3 = a87.

To get a CNFG for A take the CNFG we described for

{e, a, a2, . . . , a124}

and remove
S → E0F4G0

S → E4F4G1

S → E2F2G3

We get a CNFG for A with 16 NTs.

This trick works for any subset of {e, a, a2, . . . , a124}.
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3) Find rules and NT’s G0, . . . ,Gt−1 such that L(Gi ) = {at2i}.
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S → EiFjGk .

Let 0 ≤ n ≤ t3 − 1. We show why S ⇒ an.
Use base t: n = n0 + tn1 + t2n2 where n0, n1, n2 ∈ {0, . . . , t − 1}.

S → En0Fn1Gn2 ⇒ an0atn1at
2n2 = an.

Still need to describe the rules for Ei , Fj , Gk .
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Done and Recap

The CNFG Grammar is:

1) The Ei ’s, Fj ’s, and Gk ’s as described above.

2) For all 0 ≤ i , j , k ≤ t − 1 the rule S → EiFjGk .

The following are true:

1) The Grammar generates {e, a . . . , at3−1}.
2) The Grammar has 3t + 1 = O(t) NT’s.

3) Can modify the Grammar to omit any set of strings (next slide).
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Example of A ⊆ {e, a, a2, . . . , at3−1}

This is very similar to how we omitted strings from
A = {e, a, a2, . . . , a124}.

To omit an0+tn1+t2n2

remove the rule S → En0Fn1Gn2 .
To omit many strings, remove many rules of the form S →.
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Theorem about A ⊆ {e, a, a2, . . . , at3−1}

We have shown the following:
Thm ∀A ⊆ {e, a, a2, . . . , at3−1} ∃ a CNFG with 3t + 1 NTs.

This theorem is oddly written.
We really want to know about

A ⊆ {e, a, a2, . . . , an}.

Let t be such that n ∼ t3. Then we get:

Thm ∀A ⊆ {e, a, a2, . . . , an} ∃ a CNFG with O(n1/3) NTs.
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What About Real Chomsky Normal Form?

We state without proof what is known about Real Chomsky
Normal Form.

Thm ∀ A ⊆ {e, a, a2, . . . , at3−1} ∃ a (real) CNFG with 4t + 1 NTs.

Note The proof of the Real CNF theorem is our proof plus twenty
more slides.

Thm ∀ A ⊆ {e, a, a2, . . . , an} ∃ a (real) CNFG with O(n1/3) NTs.
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Can We Do Better Than O(n1/3) NTs?

Note From here on, CNFG means the real definition of CNF.
Note All CNFG’s mentioned generate A.
Vote

∀A ⊆ {e, a, . . . , an} ∃ a CNFG with O(n1/3−ε) NTs, ε = 1
1040

.

∀A ⊆ {e, a, . . . , an} ∃ a CNFG with O(n1/4) NTs.

∃A ⊆ {e, a, . . . , an} all CNFGs have Ω(n1/3) NTs.
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Can We Do Better Than O(n1/3) NTs?

Thm ∃A ⊆ {e, a, . . . , an} ∀ CNFG have Ω(n1/3) NTs.

We choose t later.

How many subsets of {e, a, . . . , an−1} are there? 2n.
How many CFG’s have t nonterminals?
How many rules of the form A→ BC are there? t3.
How many rules of the form A→ σ? O(t).
So there are ∼ t3 + O(t) ≤ 2t3 possible rules.
So there are ≤ 22t

3
possible CFG’s with t nonterminals.
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Can We Do Better Than O(n1/3) NTs?(cont)

Thm ∃A ⊆ {e, a, . . . , an} ∀ CNFG have Ω(n1/3) NTs.
There are 2n subsets A.

There are ≤ 2t
3+t ≤ 22t

3
CNFG’s with t NT’s.

IF there are more X ⊆ {e, a, . . . , an} than CNFG’s with t NT’s

THEN ∃ X ⊆ {e, a, . . . , an} with no CNFG of with ≤ t NT’s.

So IF 22t
3
< 2n THEN ∃ X ⊆ {e, a, . . . , an} with no CNFG that

has ≤ t NT’s.
Choose t = 0.5n1/3 = Ω(n1/3) and we have our theorem.
WE ARE DONE.
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