
Decidability and Undecidability

Exposition by William Gasarch—U of MD

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Recall Turing Machines

I am not going to bother defining TM’s again.

Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them M1,M2,

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total .

Computable Sets

Def A set A is computable if there exists a Turing Machine M
that behaves as follows:

M(x) =

{
Y if x ∈ A

N if x /∈ A
(1)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.

Computable Sets

Def A set A is computable if there exists a Turing Machine M
that behaves as follows:

M(x) =

{
Y if x ∈ A

N if x /∈ A
(1)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.

Computable Sets

Def A set A is computable if there exists a Turing Machine M
that behaves as follows:

M(x) =

{
Y if x ∈ A

N if x /∈ A
(1)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.

Computable Sets

Def A set A is computable if there exists a Turing Machine M
that behaves as follows:

M(x) =

{
Y if x ∈ A

N if x /∈ A
(1)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.

Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.

Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.

Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.

Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .

Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.

Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.

3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.

4. {e : Me has a prime number of states }.

Notation and Examples

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e, d , s) : Me,s(d) ↓}.
3. {(e, d , s) : Me,s(d) ↑}.
4. {e : Me has a prime number of states }.

Noncomputable Sets

Are there any noncomputable sets?

1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

3. That last answer is true but unsatisfying. We want an actual
example of an noncomputable set.

Noncomputable Sets

Are there any noncomputable sets?

1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

3. That last answer is true but unsatisfying. We want an actual
example of an noncomputable set.

Noncomputable Sets

Are there any noncomputable sets?

1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

3. That last answer is true but unsatisfying. We want an actual
example of an noncomputable set.

Noncomputable Sets

Are there any noncomputable sets?

1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

3. That last answer is true but unsatisfying. We want an actual
example of an noncomputable set.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.

Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.

Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this?

No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) ∈ HALT .

Given (e, d) run Me(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case
that some clever person can look at the code and figure out that
its NOT going to halt.

Recall You all thought there was no small NFA for {ai : i 6= n}
and were wrong. Hence lower bounds need proof.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑

Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(2)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}

{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}

{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }

TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}

Proofs by reductions. Similar to NPC. We will not do that.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most ,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.

HALT and SAT I

Why we will not be doing reductions in computability theory I:

Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:

Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.

Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting?

Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:

Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting?

No Machines related to other machines.

HALT and SAT I

Why we will not be doing reductions in computability theory I:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. HALT undecidable. TOT is undecidable by a reduction:
Given (e, d) we can find e ′ such that (e, d) ∈ HALT iff
e ′ ∈ TOT
Is this interesting? No Machines related to other machines.

HALT and SAT II

Why we will not be doing reductions in computability theory II:

Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!

HALT and SAT II

Why we will not be doing reductions in computability theory II:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:

Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!

HALT and SAT II

Why we will not be doing reductions in computability theory II:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.

A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!

HALT and SAT II

Why we will not be doing reductions in computability theory II:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!

HALT and SAT II

Why we will not be doing reductions in computability theory II:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:

A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!

HALT and SAT II

Why we will not be doing reductions in computability theory II:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .

A pedagogical nightmare!

HALT and SAT II

Why we will not be doing reductions in computability theory II:
Contrast

1. SAT is proven NPC. 3COL NPC by a reduction:
Formula φ maps to graph G : φ ∈ SAT iff G ∈ 3COL.
A poly time alg maps formulas to graphs .

2. HALT undecidable. TOT is undecidable by a reduction:
A Turing Machine maps Turing Machines to Turing
Machines .
A pedagogical nightmare!

What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

I Semantic Question : What does Me do? is usually
undecidable.

I Syntactic Question : What does Me look like? is usually
decidable.

What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

I Semantic Question : What does Me do? is usually
undecidable.

I Syntactic Question : What does Me look like? is usually
decidable.

What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

I Semantic Question : What does Me do? is usually
undecidable.

I Syntactic Question : What does Me look like? is usually
decidable.

What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

I Semantic Question : What does Me do? is usually
undecidable.

I Syntactic Question : What does Me look like? is usually
decidable.

What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

I Semantic Question : What does Me do? is usually
undecidable.

I Syntactic Question : What does Me look like? is usually
decidable.

What Sets of TMs Are Decidable?

Decidable sets:

{e : Me has a prime number of states }

{e : Me has a square number of alphabet symbols}

{e : no transition of Me is a MOVE-L}

Key Difference:

I Semantic Question : What does Me do? is usually
undecidable.

I Syntactic Question : What does Me look like? is usually
decidable.

Σ1 Sets

HALT is undecidable.

How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable?

Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something?

YES- NP.

Σ1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.

Compare NP to Σ1

A ∈ NP if there exists B ∈ P and poly p such that

A = {x : (∃y , |y | ≤ p(|x |))[(x , y) ∈ B]}

A ∈ Σ1 if there exists B ∈ DEC such that

A = {x : (∃y)[(x , y) ∈ B]}

Compare NP to Σ1

A ∈ NP if there exists B ∈ P and poly p such that

A = {x : (∃y , |y | ≤ p(|x |))[(x , y) ∈ B]}

A ∈ Σ1 if there exists B ∈ DEC such that

A = {x : (∃y)[(x , y) ∈ B]}

Compare NP to Σ1

A ∈ NP if there exists B ∈ P and poly p such that

A = {x : (∃y , |y | ≤ p(|x |))[(x , y) ∈ B]}

A ∈ Σ1 if there exists B ∈ DEC such that

A = {x : (∃y)[(x , y) ∈ B]}

Compare NP to Σ1

A ∈ NP if there exists B ∈ P and poly p such that

A = {x : (∃y , |y | ≤ p(|x |))[(x , y) ∈ B]}

A ∈ Σ1 if there exists B ∈ DEC such that

A = {x : (∃y)[(x , y) ∈ B]}

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.

2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?

Yes, to a limited extent.
My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.

My thesis was on showing some of those limits.

Compare NP to Σ1

1. Both use a quant and then something easy. So the sets are
difficult because of the quant.

2. 2.1 For NP easy means P and the quant is over an exp size set.
2.2 For Σ1 easy means DEC and the quant is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?
Yes, to a limited extent.
My thesis was on showing some of those limits.

More on Σ1

Thm Let A be any set. The following are equivalent:

(1) A is Σ1.

(2) There exists a TM such that A = {x : (∃s)[Me,s(x) ↓]}.
(3) There exists a total TM such that

A = {y : (∃e, s)[Me,s(x) ↓= y]}.
Because of (3) Σ1 is often called recursively enumerable or
computably enumerable .

More on Σ1

Thm Let A be any set. The following are equivalent:

(1) A is Σ1.

(2) There exists a TM such that A = {x : (∃s)[Me,s(x) ↓]}.
(3) There exists a total TM such that

A = {y : (∃e, s)[Me,s(x) ↓= y]}.
Because of (3) Σ1 is often called recursively enumerable or
computably enumerable .

More on Σ1

Thm Let A be any set. The following are equivalent:

(1) A is Σ1.

(2) There exists a TM such that A = {x : (∃s)[Me,s(x) ↓]}.

(3) There exists a total TM such that
A = {y : (∃e, s)[Me,s(x) ↓= y]}.

Because of (3) Σ1 is often called recursively enumerable or
computably enumerable .

More on Σ1

Thm Let A be any set. The following are equivalent:

(1) A is Σ1.

(2) There exists a TM such that A = {x : (∃s)[Me,s(x) ↓]}.
(3) There exists a total TM such that

A = {y : (∃e, s)[Me,s(x) ↓= y]}.

Because of (3) Σ1 is often called recursively enumerable or
computably enumerable .

More on Σ1

Thm Let A be any set. The following are equivalent:

(1) A is Σ1.

(2) There exists a TM such that A = {x : (∃s)[Me,s(x) ↓]}.
(3) There exists a total TM such that

A = {y : (∃e, s)[Me,s(x) ↓= y]}.
Because of (3) Σ1 is often called recursively enumerable or
computably enumerable .

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.

A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·

TOT is harder than HALT.

Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.

More Examples of Σi and Πi Sets

Set of Turing Machines that compute increasing functions:

{e : (∀x < y)(∃s)[Me,s(x) ↓< Me,s(y) ↓]} ∈ Π2.

Set of Turing machines that halt on all but a finite number of
inputs

{e : (∃x)(∀y > x)(∃s)[Me,s(y) ↓].

More Examples of Σi and Πi Sets

Set of Turing Machines that compute increasing functions:

{e : (∀x < y)(∃s)[Me,s(x) ↓< Me,s(y) ↓]} ∈ Π2.

Set of Turing machines that halt on all but a finite number of
inputs

{e : (∃x)(∀y > x)(∃s)[Me,s(y) ↓].

More Examples of Σi and Πi Sets

Set of Turing Machines that compute increasing functions:

{e : (∀x < y)(∃s)[Me,s(x) ↓< Me,s(y) ↓]} ∈ Π2.

Set of Turing machines that halt on all but a finite number of
inputs

{e : (∃x)(∀y > x)(∃s)[Me,s(y) ↓].

More Examples of Σi and Πi Sets

Set of Turing Machines that compute increasing functions:

{e : (∀x < y)(∃s)[Me,s(x) ↓< Me,s(y) ↓]} ∈ Π2.

Set of Turing machines that halt on all but a finite number of
inputs

{e : (∃x)(∀y > x)(∃s)[Me,s(y) ↓].

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?

Yes—a few. we will discuss three.

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?
Yes—

a few. we will discuss three.

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?
Yes—a few.

we will discuss three.

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?
Yes—a few. we will discuss three.

Hilbert’s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Def Z[x1, . . . , xn] is the set of all polys in variables x1, . . . , xn with
coefficients in Z.

Example 13x7 + 8x5 − 19x2 + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Hilbert thought this would inspire interesting Number Theory.

Hilbert’s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Def Z[x1, . . . , xn] is the set of all polys in variables x1, . . . , xn with
coefficients in Z.

Example 13x7 + 8x5 − 19x2 + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Hilbert thought this would inspire interesting Number Theory.

Hilbert’s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Def Z[x1, . . . , xn] is the set of all polys in variables x1, . . . , xn with
coefficients in Z.

Example 13x7 + 8x5 − 19x2 + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Hilbert thought this would inspire interesting Number Theory.

Hilbert’s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Def Z[x1, . . . , xn] is the set of all polys in variables x1, . . . , xn with
coefficients in Z.

Example 13x7 + 8x5 − 19x2 + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

Hilbert thought this would inspire interesting Number Theory.

Hilbert’s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Def Z[x1, . . . , xn] is the set of all polys in variables x1, . . . , xn with
coefficients in Z.

Example 13x7 + 8x5 − 19x2 + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Hilbert thought this would inspire interesting Number Theory.

Hilbert’s Tenth Problem (cont)

In 1959

Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)

Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)

Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)

worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.

Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.

(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.

But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Hilbert’s Tenth Problem (cont)

In 1959
Martin Davis (a Logician)
Hillary Putnam (a philosopher who knew math)
Julia Robinson (a female logician)
worked together and showed that if you also allow exponentials
the problem is undecidable.
Outsiders At the time

1. Logician got little respect in mathematics.

2. Philosopher got no respect in mathematics.

3. Women got little respect in mathematics.
(This was before the Eliza Furtak presidency, more on that
later.)

It may have taken people outside of the mathemmatical
mainstream to even think the problem was undecidable.
But they didn’t have Hilbert’s Tenth Problem undecidable. . . yet.

Trivia and a Question about the Eliza Furtak
Presidency

If Eliza Furtak becomes president she has promised two things

She will fund my grant.
She will be was sworn in by her nickname Eliza , not her given
name Elizabeth.

Bill Clinton was sworn in as William Jefferson Clinton
Joe Biden was sworn in as Joseph Robinette Biden
(Robinette?)

Who is the only president so far who was sworn in by his nickname?

Trivia and a Question about the Eliza Furtak
Presidency

If Eliza Furtak becomes president she has promised two things
She will fund my grant.

She will be was sworn in by her nickname Eliza , not her given
name Elizabeth.

Bill Clinton was sworn in as William Jefferson Clinton
Joe Biden was sworn in as Joseph Robinette Biden
(Robinette?)

Who is the only president so far who was sworn in by his nickname?

Trivia and a Question about the Eliza Furtak
Presidency

If Eliza Furtak becomes president she has promised two things
She will fund my grant.
She will be was sworn in by her nickname Eliza , not her given
name Elizabeth.

Bill Clinton was sworn in as William Jefferson Clinton
Joe Biden was sworn in as Joseph Robinette Biden
(Robinette?)

Who is the only president so far who was sworn in by his nickname?

Trivia and a Question about the Eliza Furtak
Presidency

If Eliza Furtak becomes president she has promised two things
She will fund my grant.
She will be was sworn in by her nickname Eliza , not her given
name Elizabeth.

Bill Clinton was sworn in as William Jefferson Clinton

Joe Biden was sworn in as Joseph Robinette Biden
(Robinette?)

Who is the only president so far who was sworn in by his nickname?

Trivia and a Question about the Eliza Furtak
Presidency

If Eliza Furtak becomes president she has promised two things
She will fund my grant.
She will be was sworn in by her nickname Eliza , not her given
name Elizabeth.

Bill Clinton was sworn in as William Jefferson Clinton
Joe Biden was sworn in as Joseph Robinette Biden
(Robinette?)

Who is the only president so far who was sworn in by his nickname?

Trivia and a Question about the Eliza Furtak
Presidency

If Eliza Furtak becomes president she has promised two things
She will fund my grant.
She will be was sworn in by her nickname Eliza , not her given
name Elizabeth.

Bill Clinton was sworn in as William Jefferson Clinton
Joe Biden was sworn in as Joseph Robinette Biden
(Robinette?)

Who is the only president so far who was sworn in by his nickname?

Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A Young Russian Mathematician
He was right!
In 1970 a Young Russian named Yuri Matiyasevich finished the
proof.
It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.

Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A Young Russian Mathematician

He was right!
In 1970 a Young Russian named Yuri Matiyasevich finished the
proof.
It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.

Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A Young Russian Mathematician
He was right!

In 1970 a Young Russian named Yuri Matiyasevich finished the
proof.
It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.

Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A Young Russian Mathematician
He was right!
In 1970 a Young Russian named Yuri Matiyasevich finished the
proof.

It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.

Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A Young Russian Mathematician
He was right!
In 1970 a Young Russian named Yuri Matiyasevich finished the
proof.
It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.

Hilbert’s Tenth Problem (cont)

Martin Davis was asked who might take their work and extend it
to get that H10 cannot be solved. He said

A Young Russian Mathematician
He was right!
In 1970 a Young Russian named Yuri Matiyasevich finished the
proof.
It is often said
H10 was proven undecidable by
Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] does
it have an integer solution is a natural question that is undecidable.

Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers For example Newton vs Leibnitz had a rap battle,
see
see https://www.youtube.com/watch?v=COeKdP3EkXU

So its interesting that for H10 this aspect is boring.

https://www.youtube.com/watch?v=COeKdP3EkXU

Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers For example Newton vs Leibnitz had a rap battle,
see
see https://www.youtube.com/watch?v=COeKdP3EkXU

So its interesting that for H10 this aspect is boring.

https://www.youtube.com/watch?v=COeKdP3EkXU

Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers For example Newton vs Leibnitz had a rap battle,
see
see https://www.youtube.com/watch?v=COeKdP3EkXU

So its interesting that for H10 this aspect is boring.

https://www.youtube.com/watch?v=COeKdP3EkXU

Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers For example Newton vs Leibnitz had a rap battle,
see
see https://www.youtube.com/watch?v=COeKdP3EkXU

So its interesting that for H10 this aspect is boring.

https://www.youtube.com/watch?v=COeKdP3EkXU

Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers For example Newton vs Leibnitz had a rap battle,
see
see https://www.youtube.com/watch?v=COeKdP3EkXU

So its interesting that for H10 this aspect is boring.

https://www.youtube.com/watch?v=COeKdP3EkXU

Historical Aside

The history of H10 is interesting because it’s boring .

1. Davis, Putnam, Robinson were delighted that the problem
was solved.

2. Davis, Putnam, Robinson, Matiyasevich all get credit which is
how it should be.

3. There have been no duels over who deserves more credit, as
their have been in the past.

4. Various combinations of the four have had papers since then
simplifying and modifying the proof.

Math (and the rest of life) is full of stories of jealousy and
credit-claimers For example Newton vs Leibnitz had a rap battle,
see
see https://www.youtube.com/watch?v=COeKdP3EkXU

So its interesting that for H10 this aspect is boring.

https://www.youtube.com/watch?v=COeKdP3EkXU

Back to Math

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

We now know this is undeciable.
For which degrees d and number-of-vars n is it undec? Dec?
For a full account see Gasarch’s survey h10.pdf

h10.pdf

Back to Math

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

We now know this is undeciable.
For which degrees d and number-of-vars n is it undec? Dec?

For a full account see Gasarch’s survey h10.pdf

h10.pdf

Back to Math

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

We now know this is undeciable.
For which degrees d and number-of-vars n is it undec? Dec?
For a full account see Gasarch’s survey h10.pdf

h10.pdf

Can you Complement a Context Free Grammar

Input A CFG G .
Question Is L(G) a CFL?

This problem is undecidable.

Proof involves looking at the set of all accepting sequences of
configurations.
(We will not be doing that, but the proof is here:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/

notes/undcfg.pdf

https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf

Can you Complement a Context Free Grammar

Input A CFG G .

Question Is L(G) a CFL?

This problem is undecidable.

Proof involves looking at the set of all accepting sequences of
configurations.
(We will not be doing that, but the proof is here:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/

notes/undcfg.pdf

https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf

Can you Complement a Context Free Grammar

Input A CFG G .
Question Is L(G) a CFL?

This problem is undecidable.

Proof involves looking at the set of all accepting sequences of
configurations.
(We will not be doing that, but the proof is here:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/

notes/undcfg.pdf

https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf

Can you Complement a Context Free Grammar

Input A CFG G .
Question Is L(G) a CFL?

This problem is undecidable.

Proof involves looking at the set of all accepting sequences of
configurations.
(We will not be doing that, but the proof is here:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/

notes/undcfg.pdf

https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf

Can you Complement a Context Free Grammar

Input A CFG G .
Question Is L(G) a CFL?

This problem is undecidable.

Proof involves looking at the set of all accepting sequences of
configurations.
(We will not be doing that, but the proof is here:
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/

notes/undcfg.pdf

https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/452/S20/notes/undcfg.pdf

