Review for CMSC 452 Final: Grammars

Context Free Languages

Context Free Grammar for $\{a^mb^n: m > n\}$

Context Free Grammar for $\{a^mb^n : m > n\}$

 $S \rightarrow AT$ $T \rightarrow aTb$ $T \rightarrow e$ $A \rightarrow Aa$ $A \rightarrow a$

Context Free Grammars

Def A **Context Free Grammar** is a tuple $G = (N, \Sigma, R, S)$

- ► *N* is a finite set of **nonterminals**.
- $ightharpoonup \Sigma$ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- ▶ $R \subseteq N \times (N \cup \Sigma)^*$ and are called **Rules**.
- $ightharpoonup S \in N$, the start symbol.

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightarrow a

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α .

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

- $ightharpoonup A \Rightarrow a$
- $ightharpoonup A \Rightarrow aB$

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

- $ightharpoonup A \Rightarrow a$
- $ightharpoonup A \Rightarrow aB$

Then we define L(G) by:

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow w \}$$

1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.

- 1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.

- 1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.
- 3) If $L \subseteq a^*$ and L is not regular than L is not a CFL.

- 1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.
- 3) If $L \subseteq a^*$ and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL's (we omit)

Closure Properties and REG⊂ CFL

1. CFL's closed under UNION-easy.

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.
- 3. CFL's closed under *-easy.

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.
- 3. CFL's closed under *-easy.
- 4. CFL's closed under INTER-FALSE: $a^nb^nc^* \cap a^*b^nc^n = a^nb^nc^n$.

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.
- 3. CFL's closed under *-easy.
- 4. CFL's closed under INTER-FALSE: $a^nb^nc^* \cap a^*b^nc^n = a^nb^nc^n$.
- 5. CFL's closed under COMPLEMENTATION: FALSE: $\overline{a^n b^n c^n}$ is CFL.

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL.

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL. Prove by ind on the length of α .

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL. Prove by ind on the length of α . We omit from this review.

Examples of CFL's and Size of CFG's

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
- 3) $S \rightarrow e$ (where S is the start state).

1.
$$(\forall w \in \{a,b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$$

- 1. $(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$
- 2. $(\forall n \in \mathbb{N})(\exists G)[L(G) = \{a^n\} \land |G| = O(\log n)].$

- 1. $(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$
- 2. $(\forall n \in \mathbb{N})(\exists G)[L(G) = \{a^n\} \land |G| = O(\log n)].$
- 3. Does there exist a string w such that for all G such that $L(G) = \{w\}, |G| = \Omega(n)$

- 1. $(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$
- 2. $(\forall n \in \mathbb{N})(\exists G)[L(G) = \{a^n\} \land |G| = O(\log n)].$
- 3. Does there exist a string w such that for all G such that $L(G) = \{w\}, |G| = \Omega(n)$ Yes- can show such strings exist by counting number-of-grammars and number-of-strings.

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L. $w = \sigma_1 \cdots \sigma_n$.

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

$$w = \sigma_1 \cdots \sigma_n$$
.

We want to know if $w \in L$. We assume $w \neq e$.

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

$$w = \sigma_1 \cdots \sigma_n$$
.

We want to know if $w \in L$. We assume $w \neq e$.

For $i \leq j$ let

$$GEN[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

$$w = \sigma_1 \cdots \sigma_n$$
.

We want to know if $w \in L$. We assume $w \neq e$.

For $i \leq j$ let

$$GEN[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

Find GEN[i, j] with Dynamic Programming.