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2. There is a JAVA program for function f iff there is a TM that
computes f .

3. Everything computable can be done by a TM.



Turing Machines

1. For this review we omit definitions and conventions.

2. There is a JAVA program for function f iff there is a TM that
computes f .

3. Everything computable can be done by a TM.



Turing Machines

1. For this review we omit definitions and conventions.

2. There is a JAVA program for function f iff there is a TM that
computes f .

3. Everything computable can be done by a TM.



Turing Machines

1. For this review we omit definitions and conventions.

2. There is a JAVA program for function f iff there is a TM that
computes f .

3. Everything computable can be done by a TM.



Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such
that

x ∈ A→ M(x) = Y

x /∈ A→ M(x) = N



Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such
that

x ∈ A→ M(x) = Y

x /∈ A→ M(x) = N



Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such
that

x ∈ A→ M(x) = Y

x /∈ A→ M(x) = N



What is a Theory

1. All theories have the usual logical symbols, a domain of
discourse for the quantifiers, and Additional Symbols .

2. Sentences are combos of Atomic Fmls using ∧, ∨, ¬, ∃ that
have all variables quantified over.

3. Hence sentences are either TRUE or FALSE.

4. Our main question will be Is this theory decidable?
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WS1S Formulas and Sentences

1. Variables x , y , z range over N, X ,Y ,Z range over finite
subsets of N.

2. Symbols: <, ∈, ≡ (mod ) (usual meaning), S (meaning
S(x) = x + 1), = (for numbers and sets).

3. Define atomic formulas, formulas, and sentences in the usual
way.
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TRUE Sets

Def If φ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then
TRUE (φ) is the set

{(a1, . . . , an,A1, . . . ,Am) | φ(a1, . . . , an,A1, . . . ,Am) = T}
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KEY THEOREM

Thm For all WS1S formulas φ the set TRUEφ is regular.

Need to clarify representation and the define stupid states to make
all of this work.

We prove this by induction on the formation of a formula. If you
prefer- induction on the LENGTH of a formula.
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DECIDABILITY OF WS1S

Thm: WS1S is Decidable.
Proof:

1. Given a SENTENCE in WS1S put it into the form

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[φ(x1, . . . , xm,X1, . . . ,Xn)]

2. Assume Q1 = ∃. (If not then negate and negate answer.)

3. View as (∃X )[φ(X )], a FORMULA with ONE free var.

4. Construct DFA M for {X | φ(X ) is true}.
5. Test if L(M) = ∅.
6. If L(M) 6= ∅ then (∃X )[φ(X )] is TRUE.

If L(M) = ∅ then (∃X )[φ(X )] is FALSE.



Undecidability



Notation

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
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Noncomputable Sets

Are there any noncomputable sets?

1. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

2. YES—HALT is undecidable, and once you have that you have
many other sets undec.

3. YES—the problem of telling if a p ∈ Z[x1, . . . , xn] has an int
solution is undecidable.

We will come back to this one later.

4. YES—there are other natural problems that are undecidable.
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Hilbert’s Tenth Problem

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

It was proven:

Thm There is no such algorithm.
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2. Show that HALT can be expressed using polynomials.

We will discuss expressing sets using polynomials.
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Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].
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Examples of Dio Sets

For a,m ∈ N.

{x : x ≡ 4 (mod 11)} = {x : (∃y)[(x ≥ 0) ∧ (x − 11y − 4 = 0)]}

{x : x 6≡ a (mod m)}.

{x : x 6≡ a (mod m)} =
10⋃

i=0,i 6=4

{x : x ≡ i (mod 11)}

{x : x ≡ i (mod 11)} = {x : (∃y)[(x ≥ 0) ∧ (x − 11y − i = 0)]}
Use MULT for OR {x : x 6≡ a (mod m)} =
{x : (∃y1, y2, y3, y5, y6, y7, y8, y9, y10)[

∏10
i=0,6=4(x − 11y − i) = 0].
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Dio Sets are Closed Under Union

Let A,B be Dio Sets.

A = {x : (∃y1, . . . , yn)[(x ≥ 0) ∧ (pA(y1, . . . , yn, x) = 0)]}
B = {x : (∃z1, . . . , zn)[(x ≥ 0) ∧ (pB(z1, . . . , zn, x) = 0)]}

{x : (∃y1, . . . , yn, z1, . . . , zn)

[(x ≥ 0) ∧ (pA(y1, . . . , yn, x)pB(z1, . . . , zn, x) = 0)]}.
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Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.
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