Review for CMSC 452 Final: P and NP

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

- 1. Everything computable is computable by a Turing machine.
- Turing machines compute with discrete steps so one can talk about how many steps a computation takes.

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

- 1. Everything computable is computable by a Turing machine.
- Turing machines compute with discrete steps so one can talk about how many steps a computation takes.
- 3. There are many different models of computation. They are all equivalent to Turing machines. And better- they are all equivalent within poly time.

```
1. P = DTIME(n^{O(1)}).
```

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).
- 3. PF is the set of a functions computable in poly time.

Def

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).
- 3. PF is the set of a functions computable in poly time.

These definitions are model independent.

We rewrite 3SAT, HAM, EUL.

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

 $HAM = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is a Ham Cycle}]\}.$

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

$$HAM = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is a Ham Cycle}]\}.$$

$$EUL = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is an Eul Cycle}]\}.$$

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

$$HAM = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is a Ham Cycle}]\}.$$

$$EUL = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is an Eul Cycle}]\}.$$

$$CLIQ = \{(G, k) : (\exists v_1, \dots, v_k)[v_1, \dots, v_k \text{ are a Clique}]\}.$$

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

$$HAM = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is a Ham Cycle}]\}.$$

$$EUL = \{G : (\exists v_1, \dots, v_n)[v_1, \dots, v_n \text{ is an Eul Cycle}]\}.$$

$$CLIQ = \{(G, k) : (\exists v_1, \dots, v_k)[v_1, \dots, v_k \text{ are a Clique}]\}.$$

For the above sets: If x is a member then there is a short verifiable witness of this.

Def A is in NP if there exists a set $B \in \operatorname{P}$ and a polynomial p such that

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x,y) \in B]\}.$$

Def A is in NP if there exists a set $B \in \operatorname{P}$ and a polynomial p such that

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x,y) \in B]\}.$$

Intuition. Let $A \in NP$.

Def A is in NP if there exists a set $B \in P$ and a polynomial p such that

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

▶ If $x \in A$ then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time.

Def A is in NP if there exists a set $B \in P$ and a polynomial p such that

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

- ▶ If $x \in A$ then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time.
- So if I wanted to convince you that $x \in A$, I could give you y. You can verify $(x, y) \in B$ easily and be convinced.

Def A is in NP if there exists a set $B \in P$ and a polynomial p such that

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

- ▶ If $x \in A$ then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time.
- So if I wanted to convince you that $x \in A$, I could give you y. You can verify $(x, y) \in B$ easily and be convinced.
- ▶ If $x \notin A$ then there is NO proof that $x \in A$.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f:

$$x \in X$$
 iff $f(x) \in Y$.

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f:

$$x \in X$$
 iff $f(x) \in Y$.

Def A set *Y* is **NP-complete** (**NPC**) if the following hold:

- $Y \in NP$
- ▶ If $X \in NP$ then $X \leq Y$.

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f:

$$x \in X$$
 iff $f(x) \in Y$.

Def A set *Y* is **NP-complete** (**NPC**) if the following hold:

- $Y \in NP$
- ▶ If $X \in NP$ then X < Y.

Cook-Levin Theorem 3SAT is NP-complete.

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f:

$$x \in X$$
 iff $f(x) \in Y$.

Def A set *Y* is **NP-complete** (**NPC**) if the following hold:

- $Y \in NP$
- ▶ If $X \in NP$ then X < Y.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

1. SAT is NP-complete by Cook-Levin Theorem.

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.
- 3. CLIQ is NP-complete. Can show $IS \leq CLIQ$ easily by complemntation.

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.
- 3. CLIQ is NP-complete. Can show $IS \leq CLIQ$ easily by complemntation.
- 4. 3COL is NP-complete. We proved this by showing $3SAT \leq 3COL$.

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.
- 3. CLIQ is NP-complete. Can show IS \leq CLIQ easily by complemntation.
- 4. 3COL is NP-complete. We proved this by showing $3SAT \leq 3COL$.
- 5. HAM is NP-complete. We did not show this.