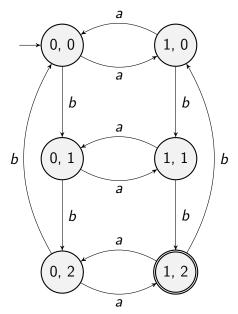
Review for CMSC 452 Final

Deterministic Finite Automata (DFA)

 $\{w: \#_a(w) \equiv 1 \pmod{2} \land \#_b(w) \equiv 2 \pmod{3}\}$

 $\{w: \#_a(w) \equiv 1 \pmod{2} \land \#_b(w) \equiv 2 \pmod{3}\}$



Nondeterministic Finite Automata (NFA)

NFA's Intuitively

- 1. An NFA is a DFA that can guess.
- 2. NFAs do not really exist.
- 3. Good for \cup since can guess which one.
- 4. An NFA accepts iff SOME guess accepts.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. **Pf Sketch** L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

- 1. Get rid of e-transitions using reachability.
- 2. Get rid of non-determinism by using power sets. Possibly 2ⁿ blowup.

Regular Expressions

Examples

- 1. $b^*(ab^*ab^*)^*ab^*$
- 2. b*(ab*ab*ab*)*
- 3. $(b^*(ab^*ab^*)^*ab^*) \cup (b^*(ab^*ab^*ab^*)^*)$

DFA = NFA = REGEX

 $NFA \subseteq DFA$: Use Power Set Construction. Exp Blowup.

DFA = NFA = REGEX

 $NFA \subseteq DFA$: Use Power Set Construction. Exp Blowup.

DFA \subseteq REGEX: Use R(i, j, k) construction.

DFA = NFA = REGEX

 $NFA \subseteq DFA$: Use Power Set Construction. Exp Blowup.

DFA \subseteq REGEX: Use R(i, j, k) construction.

 $REGEX \subseteq NFA$: Induction on formation of regex. Linear.

Closure Properties

Prod means product construction where you use $Q_1 imes Q_2$

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex.

Swap means swapping final and non-final states.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex. **Swap** means swapping final and non-final states. **e-trans** means by using **e**-transitions, e.g., $L_1 \cdot L_2$ for NFAs.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex. **Swap** means swapping final and non-final states. **e-trans** means by using **e**-transitions, e.g., $L_1 \cdot L_2$ for NFAs. **X** means hard to prove, e.g., \overline{L} for NFA.

Prod means product construction where you use $Q_1 imes Q_2$

Def means by Definition, e.g., $L_1 \cup L_2$ for regex.

Swap means swapping final and non-final states.

e-trans means by using *e*-transitions, e.g., $L_1 \cdot L_2$ for NFAs.

X means hard to prove, e.g., \overline{L} for NFA.

Property	DFA	NFA	regex
$L_1 \cup L_2$	Prod	<i>e</i> -trans	Def
$L_1 \cap L_2$	Prod	Prod	Χ
L	Swap	X	Χ
$L_1 \cdot L_2$	X	<i>e</i> -trans	Def
L*	X	<i>e</i> -trans	Def

X means Can't Prove Easily

X means Can't Prove Easily n_1 , n_2 are number of states in a DFA or NFA.

X means Can't Prove Easily n_1, n_2 are number of states in a DFA or NFA. ℓ, ℓ_2 are length of regex.

X means Can't Prove Easily

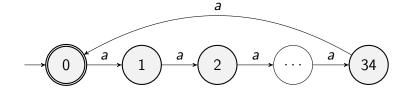
 n_1 , n_2 are number of states in a DFA or NFA.

 $\ell_{,}\ell_{2}$ are length of regex.

Closure Property	DFA	NFA	Regex
$L_1 \cup L_2$	$n_1 n_2$	$n_1 + n_2 + 1$	$\ell_1 + \ell_2$
$L_1 \cap L_2$	$n_1 n_2$	$n_1 n_2$	X
$L_1 \cdot L_2$	X	$n_1 + n_2$	$\ell_1 + \ell_2$
<u>L</u>	n	X	X
L*	X	n+1	$\ell+1$

Number of States for DFAs and NFAs

Minimal DFA for $L_1 = \{a^i : i \equiv 0 \pmod{35}\}$



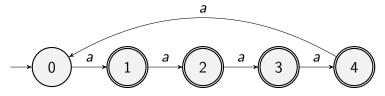
 $\mathsf{Min}\;\mathsf{DFA}\;\mathsf{for}\;L_2=\{a^i:i\not\equiv 0\;(\mathsf{mod}\;35)\}$

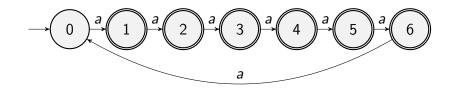
Min DFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

 \exists DFA for L_2 : 35 states: swap final-final states in DFA for L_1 .

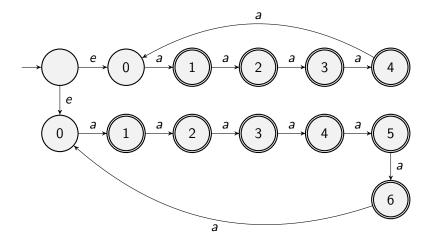
Small NFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

Need these two NFA's.





Small NFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$



 $L_2 = \{a^i: i \not\equiv 0 \pmod{35}\}$

$$L_2=\{a^i:i\not\equiv 0\ (\text{mod }35)\}$$

DFA for L_2 requires 35 states.

$$L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$$

DFA for L_2 requires 35 states.

NFA for L_2 can be done with 1+5+7=13 states.

Proving That a Language Is Not Regular

Pumping Lemma

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1. w = xyz and $y \neq e$.

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)
- 3. For all $i \ge 0$, $xy^iz \in L$.

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)
- 3. For all $i \ge 0$, $xy^iz \in L$.

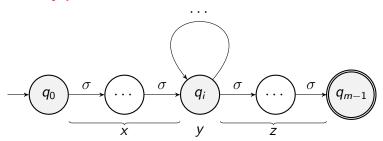
Proof by picture

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)
- 3. For all $i \ge 0$, $xy^iz \in L$.

Proof by picture



We restate it in the way that we use it.

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

1. w = xyz and $y \neq e$.

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |*xy*| **is short**.
- 3. for all i, $xy^iz \in L$.

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |*xy*| **is short**.
- 3. for all i, $xy^iz \in L$.

We then find some *i* such that $xy^iz \notin L$ for the contradiction.

Assume L_1 is regular.

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

1. $y \neq e$.

Assume L_1 is regular.

By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

$$x = a^{j}, y = a^{k}, z = a^{n-j-k}b^{n}.$$

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

$$x = a^j$$
, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

Assume L_1 is regular.

By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

$$x = a^j$$
, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

By the PL, all of the words

Assume L_1 is regular.

By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $v = a^k$, $z = a^{n-j-k}b^n$. Note k > 1.

By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n}$$

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Assume L_1 is regular.

By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Take i = 2 to get

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Assume L_1 is regular.

By PL, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

 $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n}=a^{n+k(i-1)}b^{n}$$

are in L_1 .

Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Contradiction since $k \geq 1$.

 $L_3 = \{w : \#_a(w) \neq \#_b(w)\}$ is Not Regular

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

If L_3 is regular then $L_2 = \overline{L_3}$ is regular. But we know that L_2 is not regular. DONE!

 $L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

Intuition Perfect squares keep getting further apart.

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language. We omit details.

1. Lexical Analyzer for compilers (we didn't do this).

- 1. Lexical Analyzer for compilers (we didn't do this).
- 2. Pattern Matching Algorithms like grep (we didn't do this).

- 1. Lexical Analyzer for compilers (we didn't do this).
- 2. Pattern Matching Algorithms like grep (we didn't do this).
- 3. Decidability of WS1S (we did this).