BILL AND NATHAN, RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

BILL RECORD LECTURE!!!

Graph Isomorphism Is Probably Not NPC

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) $\mathrm{GI}\in\mathrm{NP}$: the isomorphism is the witness.

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) $GI \in NP$: the isomorphism is the witness.

2) People have tried to prove $GI \in P$. Partial results:

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

ション ふぼう メリン メリン しょうくしゃ

1) GI \in NP: the isomorphism is the witness.

- 2) People have tried to prove $\mathrm{GI}\in\mathrm{P}.$ Partial results:
- a) P-time alg for graphs of bdded degree (Luks,1981)

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) GI \in NP: the isomorphism is the witness.

- 2) People have tried to prove $GI \in P$. Partial results:
- a) P-time alg for graphs of bdded degree (Luks,1981)
- b) P-time alg for graph of bdded eigenvalue Mult (BGM 1982).

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) GI \in NP: the isomorphism is the witness.

2) People have tried to prove $GI \in P$. Partial results:

a) P-time alg for graphs of bdded degree (Luks,1981)

b) P-time alg for graph of bdded eigenvalue Mult (BGM 1982).

(BGM is Babai-Grigoryev-Mount- Our Dave Mount!)

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) GI \in NP: the isomorphism is the witness.

2) People have tried to prove GI ∈ P. Partial results:
a) P-time alg for graphs of bdded degree (Luks,1981)
b) P-time alg for graph of bdded eigenvalue Mult (BGM 1982).
(BGM is Babai-Grigoryev-Mount- Our Dave Mount!)
c) n^{log³ n} time alg. (Babai 2015)).

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) GI \in NP: the isomorphism is the witness.

2) People have tried to prove GI ∈ P. Partial results:
a) P-time alg for graphs of bdded degree (Luks,1981)
b) P-time alg for graph of bdded eigenvalue Mult (BGM 1982).
(BGM is Babai-Grigoryev-Mount- Our Dave Mount!)
c) n^{log³ n} time alg. (Babai 2015)).

3) People have tried to prove GI is NP-complete. No progress.

Def Graph Isomorphism (GI) is, given two graphs, are they isomorphic, denoted $G_1 \simeq G_2$.

1) GI \in NP: the isomorphism is the witness.

2) People have tried to prove GI ∈ P. Partial results:
a) P-time alg for graphs of bdded degree (Luks,1981)
b) P-time alg for graph of bdded eigenvalue Mult (BGM 1982).
(BGM is Babai-Grigoryev-Mount- Our Dave Mount!)
c) n^{log³ n} time alg. (Babai 2015)).

3) People have tried to prove GI is NP-complete. No progress. We show a reason why people think GI is not NP-complete.

An Interactive Protocol for $\overline{\mathrm{GI}}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

The title is not quite right. It should be

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

The title is not quite right. It should be Intuition: Why GI is diff from TAUT

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The title is not quite right. It should be **Intuition: Why** $\overline{\mathbf{GI}}$ is diff from TAUT Alice wants to convince Bob $\phi \in \text{TAUT}$. How? Discuss.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

The title is not quite right. It should be

Intuition: Why $\overline{\mathrm{GI}}$ is diff from TAUT

Alice wants to convince Bob $\phi \in TAUT$. How? Discuss. Alice could give Bob **The entire Truth Table For** ϕ .

The title is not quite right. It should be

Intuition: Why $\overline{\mathrm{GI}}$ is diff from TAUT

Alice wants to convince Bob $\phi \in TAUT$. How? Discuss. Alice could give Bob **The entire Truth Table For** ϕ . Can Alice give Bob **short proof** that $\phi \in TAUT$? Discuss.

The title is not quite right. It should be

Intuition: Why $\overline{\mathrm{GI}}$ is diff from TAUT

ション ふぼう メリン メリン しょうくしゃ

Alice wants to convince Bob $\phi \in TAUT$. How? Discuss.

Alice could give Bob **The entire Truth Table For** ϕ .

Can Alice give Bob **short proof** that $\phi \in TAUT$? Discuss. We do not know; however, we think not.

The title is not quite right. It should be

Intuition: Why $\overline{\mathrm{GI}}$ is diff from TAUT

Alice wants to convince Bob $\phi \in TAUT$. How? Discuss.

Alice could give Bob **The entire Truth Table For** ϕ .

Can Alice give Bob **short proof** that $\phi \in TAUT$? Discuss. We do not know; however, we think not.

More precise We do not think $TAUT \in NP$.

The title is not quite right. It should be

Intuition: Why $\overline{\mathrm{GI}}$ is diff from TAUT

Alice wants to convince Bob $\phi \in TAUT$. How? Discuss.

Alice could give Bob **The entire Truth Table For** ϕ .

Can Alice give Bob short proof that $\phi \in TAUT$? Discuss. We do not know; however, we think not.

More precise We do not think $TAUT \in NP$.

Alice wants to convince Bob $(G_1, G_2) \in \overline{\text{GI}}$. How? Discuss.

The title is not quite right. It should be

Intuition: Why $\overline{\mathrm{GI}}$ is diff from TAUT

Alice wants to convince Bob $\phi \in TAUT$. How? Discuss.

Alice could give Bob **The entire Truth Table For** ϕ .

Can Alice give Bob **short proof** that $\phi \in TAUT$? Discuss. We do not know; however, we think not.

More precise We do not think $TAUT \in NP$.

Alice wants to convince Bob $(G_1, G_2) \in \overline{\text{GI}}$. How? Discuss. GOTO Next Page.

The following would be great but it is not known: $\overline{\mathrm{GI}} \in \mathrm{NP}$.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

The following would be great but it is not known: $\overline{GI} \in \mathrm{NP}.$ That would contrast $\mathrm{TAUT}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following would be great but it is not known: $\overline{GI} \in NP$. That would contrast TAUT. Alas don't know if this is true.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

The following would be great but it is not known: $\overline{\mathrm{GI}} \in \mathrm{NP}$. That would contrast TAUT. Alas don't know if this is true. Alice wants to convince Bob that $(G_1, G_2) \in \overline{\mathrm{GI}}$.

The following would be great but it is not known: $\overline{GI} \in NP$. That would contrast TAUT. Alas don't know if this is true. Alice wants to convince Bob that $(G_1, G_2) \in \overline{GI}$. We put several twists on Alice sends short verifiable proof.

ション ふぼう メリン メリン しょうくしゃ

The following would be great but it is not known: $\overline{\mathrm{GI}} \in \mathrm{NP}$. That would contrast TAUT. Alas don't know if this is true. Alice wants to convince Bob that $(G_1, G_2) \in \overline{\mathrm{GI}}$. We put several twists on Alice sends short verifiable proof. 1) Bob sends Alice a challenge, Alice responds, Bob verifies.

The following would be great but it is not known: $\overline{GI} \in NP$. That would contrast TAUT. Alas don't know if this is true. Alice wants to convince Bob that $(G_1, G_2) \in \overline{GI}$. We put several twists on **Alice sends short verifiable proof**. 1) Bob sends Alice a challenge, Alice responds, Bob verifies. 2) Bob flips coins to decide what to send. He verifies in poly.

The following would be great but it is not known: $\overline{GI} \in NP$. That would contrast TAUT. Alas don't know if this is true.

Alice wants to convince Bob that $(G_1, G_2) \in \overline{\mathrm{GI}}$.

We put several twists on Alice sends short verifiable proof.

- 1) Bob sends Alice a challenge, Alice responds, Bob verifies.
- 2) Bob flips coins to decide what to send. He verifies in poly.

3) We allow a probability of error.

- The following would be great but it is not known: $\overline{GI} \in NP$. That would contrast TAUT. Alas don't know if this is true.
- Alice wants to convince Bob that $(G_1, G_2) \in \overline{\mathrm{GI}}$.

We put several twists on Alice sends short verifiable proof.

- 1) Bob sends Alice a challenge, Alice responds, Bob verifies.
- 2) Bob flips coins to decide what to send. He verifies in poly.
- 3) We allow a probability of error.
- 4) This is IP(2). 2 is for 2 rounds. We won't define formally.

The following would be great but it is not known: $\overline{GI} \in NP$. That would contrast TAUT. Alas don't know if this is true.

Alice wants to convince Bob that $(G_1, G_2) \in \overline{\mathrm{GI}}$.

We put several twists on Alice sends short verifiable proof.

- 1) Bob sends Alice a challenge, Alice responds, Bob verifies.
- 2) Bob flips coins to decide what to send. He verifies in poly.
- 3) We allow a probability of error.
- 4) This is ${\rm IP}(2).$ 2 is for 2 rounds. We won't define formally. We show $\overline{{\rm GI}}\in{\rm IP}(2)$ on next slide.

1) Alice and Bob are looking at G_1, G_2 . Each has *n* vertices.

(ロト (個) (E) (E) (E) (E) のへの

Alice and Bob are looking at G₁, G₂. Each has n vertices.
 Bob flips a coin n times get a seq b₁ · · · b_n.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1) Alice and Bob are looking at G_1 , G_2 . Each has *n* vertices.
- 2) Bob flips a coin *n* times get a seq $b_1 \cdots b_n$.
- 3) For $1 \le i \le n$ Bob rand permutes vertices of G_{b_i} to get H_i .

- 1) Alice and Bob are looking at G_1, G_2 . Each has *n* vertices.
- 2) Bob flips a coin *n* times get a seq $b_1 \cdots b_n$.
- 3) For $1 \le i \le n$ Bob rand permutes vertices of G_{b_i} to get H_i .

4) Bob sends H_1, \ldots, H_n to Alice. This is a challenge!
Alice and Bob are looking at G₁, G₂. Each has n vertices.
Bob flips a coin n times get a seq b₁ · · · b_n.
For 1 ≤ i ≤ n Bob rand permutes vertices of G_{bi} to get H_i.
Bob sends H₁, . . . , H_n to Alice. This is a challenge!
(G₁, G₂) ∈ GI → Alice can tell H_i ≃ G_{bi}.

Alice and Bob are looking at G₁, G₂. Each has n vertices.
Bob flips a coin n times get a seq b₁ · · · b_n.
For 1 ≤ i ≤ n Bob rand permutes vertices of G_{bi} to get H_i.
Bob sends H₁, . . . , H_n to Alice. This is a challenge!
(G₁, G₂) ∈ GI → Alice can tell H_i ≃ G_{bi}.
(G₁, G₂) ∉ GI → Alice is clueless. Uninformed guess possible.

Alice and Bob are looking at G₁, G₂. Each has n vertices.
Bob flips a coin n times get a seq b₁ ··· b_n.
For 1 ≤ i ≤ n Bob rand permutes vertices of G_{bi} to get H_i.
Bob sends H₁, ..., H_n to Alice. This is a challenge!
(G₁, G₂) ∈ GI → Alice can tell H_i ≃ G_{bi}.
(G₁, G₂) ∉ GI → Alice is clueless. Uninformed guess possible.
Alice sends an n bit string c₁ ··· c_n.

Alice and Bob are looking at G₁, G₂. Each has n vertices.
Bob flips a coin n times get a seq b₁ ··· b_n.
For 1 ≤ i ≤ n Bob rand permutes vertices of G_{bi} to get H_i.
Bob sends H₁, ..., H_n to Alice. This is a challenge!
(G₁, G₂) ∈ GI → Alice can tell H_i ≃ G_{bi}.
(G₁, G₂) ∉ GI → Alice is clueless. Uninformed guess possible.
Alice sends an n bit string c₁ ··· c_n.
b₁ ··· b_n = c₁ ··· c_n → Bob accepts, else Bob rejects.

Alice and Bob are looking at G₁, G₂. Each has n vertices.
Bob flips a coin n times get a seq b₁ ··· b_n.
For 1 ≤ i ≤ n Bob rand permutes vertices of G_{bi} to get H_i.
Bob sends H₁, ..., H_n to Alice. This is a challenge!
(G₁, G₂) ∈ GI → Alice can tell H_i ≃ G_{bi}.
(G₁, G₂) ∉ GI → Alice is clueless. Uninformed guess possible.
Alice sends an n bit string c₁ ··· c_n.
b₁ ··· b_n = c₁ ··· c_n → Bob accepts, else Bob rejects.
Easy to show
(G₁, G₂) ∈ GI → Alice can send the correct string.

1) Alice and Bob are looking at G_1, G_2 . Each has *n* vertices. 2) Bob flips a coin *n* times get a seg $b_1 \cdots b_n$. 3) For $1 \le i \le n$ Bob rand permutes vertices of G_{b_i} to get H_i . 4) Bob sends H_1, \ldots, H_n to Alice. This is a challenge! $(G_1, G_2) \in \mathrm{GI} \to \mathrm{Alice} \mathrm{can} \mathrm{tell} H_i \simeq G_{b_i}$ $(G_1, G_2) \notin \overline{\mathrm{GI}} \to \text{Alice is clueless.}$ Uninformed guess possible. 5) Alice sends an *n* bit string $c_1 \cdots c_n$. 6) $b_1 \cdots b_n = c_1 \cdots c_n \rightarrow \text{Bob accepts, else Bob rejects.}$ Easy to show $(G_1, G_2) \in \overline{\mathrm{GI}} \to$ Alice can send the correct string. $(G_1, G_2) \notin \overline{\mathrm{GI}} \to \operatorname{Prob} \operatorname{Alice}$ sends the correct string is $\frac{1}{2n}$.

 $\overline{\mathrm{GI}} \in \mathrm{IP}(2)$
So What?

Recall that the original goal was to get If GI is NPC then something unlikely happens

Recall that the original goal was to get If GI is NPC then something unlikely happens If GI is NPC then, since $GI \in IP(2)M$, $TAUT \in IP(2)$.

Recall that the original goal was to get If GI is NPC then something unlikely happens If GI is NPC then, since $GI \in IP(2)M$, $TAUT \in IP(2)$. Does $TAUT \in IP(2)$ imply P = NP?

Recall that the original goal was to get If GI is NPC then something unlikely happens If GI is NPC then, since $GI \in IP(2)M$, $TAUT \in IP(2)$. Does $TAUT \in IP(2)$ imply P = NP? No.

Recall that the original goal was to get If GI is NPC then something unlikely happens If GI is NPC then, since $GI \in IP(2)M$, $TAUT \in IP(2)$. Does $TAUT \in IP(2)$ imply P = NP? No. Does $TAUT \in IP(2)$ imply NP = co-NP?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall that the original goal was to get If GI is NPC then something unlikely happens If GI is NPC then, since $GI \in IP(2)M$, $TAUT \in IP(2)$. Does $TAUT \in IP(2)$ imply P = NP? No. Does $TAUT \in IP(2)$ imply NP = co-NP? No.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall that the original goal was to get If GI is NPC then something unlikely happens If GI is NPC then, since $GI \in IP(2)M$, $TAUT \in IP(2)$. Does $TAUT \in IP(2)$ imply P = NP? No. Does $TAUT \in IP(2)$ imply NP = co-NP? No. To state what $TAUT \in IP(2)$ implies, we need more definitions.

ション ふゆ アメビア メロア しょうくしゃ

Recall

 $A \in \operatorname{NP}$ if there exists poly p and set $B \in \operatorname{P}$ such that

Recall

 $A \in \operatorname{NP}$ if there exists poly p and set $B \in \operatorname{P}$ such that

$$A = \{x : (\exists y, |y| \le p(|x|)[(x, y) \in B]\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall

 $A \in NP$ if there exists poly p and set $B \in P$ such that

$$A = \{x : (\exists y, |y| \le p(|x|)[(x, y) \in B]\}.$$

Notation We use \exists^{p} and \forall^{p} to mean the variable is bounded by poly in the length of an understood input.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recall

 $A \in NP$ if there exists poly p and set $B \in P$ such that

$$A = \{x : (\exists y, |y| \le p(|x|)[(x, y) \in B]\}.$$

Notation We use \exists^{p} and \forall^{p} to mean the variable is bounded by poly in the length of an understood input.

 $A \in NP$ if there exists $B \in P$ such that

Recall

 $A \in NP$ if there exists poly p and set $B \in P$ such that

$$A = \{x : (\exists y, |y| \le p(|x|)[(x, y) \in B]\}.$$

Notation We use \exists^{p} and \forall^{p} to mean the variable is bounded by poly in the length of an understood input.

 $A \in NP$ if there exists $B \in P$ such that

$$A = \{x : (\exists^p y) [(x, y) \in B]\}.$$

 $A\in \Sigma_1$ (also called NP) if there exists $B\in \mathrm{P}$ such that

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

 $A = \{x : (\exists^p y) [(x, y) \in B]\}.$

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

 $A = \{x : (\exists^p y) [(x, y) \in B]\}.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $A \in \Pi_1$ (also called co-NP) if there exists $B \in P$ such that

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

$$A = \{x : (\exists^p y) [(x, y) \in B]\}.$$

 $A \in \Pi_1$ (also called co-NP) if there exists $B \in P$ such that

$$A = \{x : (\forall^p y) [(x, y) \in B]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

$$A = \{x : (\exists^p y) [(x, y) \in B]\}.$$

 $A \in \Pi_1$ (also called co-NP) if there exists $B \in P$ such that

$$A = \{x : (\forall^{p} y) [(x, y) \in B]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Examples

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

$$A = \{x : (\exists^p y) [(x, y) \in B]\}.$$

 $A \in \Pi_1$ (also called co-NP) if there exists $B \in P$ such that

$$A = \{x : (\forall^p y) [(x, y) \in B]\}.$$

Examples

1) TAUT = { ϕ : $(\forall x)[\phi(x) = T]$ }

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

$$A = \{x : (\exists^p y) [(x, y) \in B]\}.$$

 $A \in \Pi_1$ (also called co-NP) if there exists $B \in P$ such that

$$A = \{x : (\forall^p y) [(x, y) \in B]\}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Examples

1) TAUT = { ϕ : $(\forall x)[\phi(x) = T]$ } 2) HAMC = {G : $(\forall$ cycles C)[C is not Hamiltonian]}

 $A \in \Sigma_1$ (also called NP) if there exists $B \in P$ such that

$$A = \{x : (\exists^p y) [(x, y) \in B]\}.$$

 $A \in \Pi_1$ (also called co-NP) if there exists $B \in P$ such that

$$A = \{x : (\forall^p y) [(x, y) \in B]\}.$$

ション ふゆ アメビア メロア しょうくしゃ

Examples

- 1) TAUT = { $\phi : (\forall x)[\phi(x) = T]$ }
- 2) $\overline{\text{HAMC}} = \{G : (\forall \text{ cycles } C)[C \text{ is not Hamiltonian}]\}$
- 3) If A is any set in NP then \overline{A} in in Π_1 .

$A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

 $A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

 $A = \{x : (\exists^p y)(\forall^p z)[(x, y, z) \in B]\}.$

 $A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

$$A = \{x : (\exists^{p} y)(\forall^{p} z)[(x, y, z) \in B]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

 $A \in \Pi_2$ (also called Π_2^p) if there exists $B \in P$ such that

 $A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

$$A = \{x : (\exists^{p} y)(\forall^{p} z)[(x, y, z) \in B]\}.$$

 $A \in \Pi_2$ (also called Π_2^p) if there exists $B \in P$ such that

$$A = \{x : (\forall^{p} y)(\exists^{p})[(x, y) \in B]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

 $A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

$$A = \{x : (\exists^{p} y)(\forall^{p} z)[(x, y, z) \in B]\}.$$

 $A \in \Pi_2$ (also called Π_2^p) if there exists $B \in P$ such that

$$A = \{x : (\forall^{p} y)(\exists^{p})[(x, y) \in B]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Examples

 $A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

$$A = \{x : (\exists^{p} y)(\forall^{p} z)[(x, y, z) \in B]\}.$$

 $A \in \Pi_2$ (also called Π_2^p) if there exists $B \in P$ such that

$$A = \{x : (\forall^{p} y)(\exists^{p})[(x, y) \in B]\}.$$

ション ふゆ アメビア メロア しょうくしゃ

Examples

 $\{\phi(\vec{x},\vec{y}): (\exists \vec{b})(\forall \vec{c})[\phi(\vec{b},\vec{c})] \text{ In } \Sigma_2.$

 $A \in \Sigma_2$ (also called Σ_2^p) if there exists $B \in P$ such that

$$A = \{x : (\exists^{p} y)(\forall^{p} z)[(x, y, z) \in B]\}.$$

 $A \in \Pi_2$ (also called Π_2^p) if there exists $B \in P$ such that

$$A = \{x : (\forall^{p} y)(\exists^{p})[(x, y) \in B]\}.$$

Examples

 $\{ \phi(\vec{x}, \vec{y}) : (\exists \vec{b})(\forall \vec{c})[\phi(\vec{b}, \vec{c})] \text{ In } \Sigma_2. \\ \{ \phi : \phi \text{ is the min sized fml for the function } \phi \} \text{ In } \Pi_2 \text{ (Exercise)}$

ション ふゆ アメビア メロア しょうくしゃ

The Polynomial Hierarchy

The Polynomial Hierarchy

1) There are very few natural problems naturally in Σ_2 or Π_2 .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ
- 1) There are very few natural problems naturally in Σ_2 or $\Pi_2.$
- 2) Can define Σ_3, Π_3 . The hierarchy is called Poly Hierarchy

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- 1) There are very few natural problems naturally in Σ_2 or Π_2 .
- 2) Can define Σ_3 , Π_3 . The hierarchy is called Poly Hierarchy

3) $\Sigma_1 \subseteq \Sigma_2 \cdots$. Thought to be proper.

- 1) There are very few natural problems naturally in Σ_2 or Π_2 .
- 2) Can define Σ_3, Π_3 . The hierarchy is called Poly Hierarchy

- 3) $\Sigma_1 \subseteq \Sigma_2 \cdots$. Thought to be proper.
- 4) $\Pi_1 \subseteq \Pi_2 \cdots$. Thought to be proper.

- 1) There are very few natural problems naturally in Σ_2 or Π_2 .
- 2) Can define Σ_3, Π_3 . The hierarchy is called Poly Hierarchy

- 3) $\Sigma_1 \subseteq \Sigma_2 \cdots$. Thought to be proper.
- 4) $\Pi_1 \subseteq \Pi_2 \cdots$. Thought to be proper.
- 5) $\Sigma_i \subseteq \Pi_{i+1}$. Thought to be proper.

If \overline{GI} is NPC then ...

1) From $\mathrm{TAUT} \in \mathrm{IP}(2)$ can show that $\Sigma_3 = \Pi_3.$

・ロト・日本・ヨト・ヨト・日・ つへぐ

1) From $\mathrm{TAUT} \in \mathrm{IP}(2)$ can show that $\Sigma_3 = \Pi_3.$

2) From $\mathrm{TAUT} \in \mathrm{IP}(2)$ can show that $\Sigma_2 = \Pi_2$ (this takes more effort).

・ロト・日本・モト・モト・モー うへぐ

1) From $\mathrm{TAUT} \in \mathrm{IP}(2)$ can show that $\Sigma_3 = \Pi_3.$

2) From $\mathrm{TAUT}\in\mathrm{IP}(2)$ can show that $\Sigma_2=\Pi_2$ (this takes more effort).

Most people thing that the poly hierarchy is proper and hence that $\Sigma_2\neq\Pi_2$ and hence that ${\rm GI}$ is not NPC.

ション ふゆ アメビア メロア しょうくしゃ

1) From $\mathrm{TAUT} \in \mathrm{IP}(2)$ can show that $\Sigma_3 = \Pi_3.$

2) From $\mathrm{TAUT}\in\mathrm{IP}(2)$ can show that $\Sigma_2=\Pi_2$ (this takes more effort).

Most people thing that the poly hierarchy is proper and hence that $\Sigma_2\neq\Pi_2$ and hence that ${\rm GI}$ is not NPC.

ション ふゆ アメビア メロア しょうくしゃ

My Prediction

▲□▶▲圖▶▲≧▶▲≧▶ ≧ りへぐ

My Prediction

1. $P \neq NP$ will be proven in the year 2525.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

My Prediction

1. $P \neq NP$ will be proven in the year 2525.

(ロト (個) (E) (E) (E) (E) のへの

2. We still won't know the status of GI.