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Graph Isomorphism
Is Probably Not NPC



Graph Isomorphism: A History

Def Graph Isomorphism (GI) is, given two graphs, are they
isomorphic, denoted G1 ' G2.

1) GI ∈ NP: the isomorphism is the witness.

2) People have tried to prove GI ∈ P. Partial results:
a) P-time alg for graphs of bdded degree (Luks,1981)
b) P-time alg for graph of bdded eigenvalue Mult (BGM 1982).
(BGM is Babai-Grigoryev-Mount- Our Dave Mount!)

c) nlog
3 n time alg. (Babai 2015)).

3) People have tried to prove GI is NP-complete. No progress.

We show a reason why people think GI is not NP-complete.
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An Interactive Protocol
for GI



Intuition: Why GI is Diff than SAT

The title is not quite right. It should be

Intuition: Why GI is diff from TAUT

Alice wants to convince Bob φ ∈ TAUT. How? Discuss.
Alice could give Bob The entire Truth Table For φ.

Can Alice give Bob short proof that φ ∈ TAUT? Discuss.
We do not know; however, we think not.

More precise We do not think TAUT ∈ NP.

Alice wants to convince Bob (G1,G2) ∈ GI. How? Discuss.
GOTO Next Page.
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Intuition: Why GI is diff from TAUT

The following would be great but it is not known: GI ∈ NP.

That would contrast TAUT. Alas don’t know if this is true.

Alice wants to convince Bob that (G1,G2) ∈ GI.

We put several twists on Alice sends short verifiable proof.

1) Bob sends Alice a challenge, Alice responds, Bob verifies.
2) Bob flips coins to decide what to send. He verifies in poly.
3) We allow a probability of error.
4) This is IP(2). 2 is for 2 rounds. We won’t define formally.
We show GI ∈ IP(2) on next slide.
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GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.

2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.

3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .

4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!

(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .

(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.

5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.

6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show

(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.

(G1,G2) /∈ GI → Prob Alice sends the correct string is 1
2n .



GI is in IP(2)

1) Alice and Bob are looking at G1,G2. Each has n vertices.
2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



GI ∈ IP(2)
So What?



Consequences of GI ∈ IP(2)

Recall that the original goal was to get
If GI is NPC then something unlikely happens

If GI is NPC then, since GI ∈ IP(2)M, TAUT ∈ IP(2).

Does TAUT ∈ IP(2) imply P = NP? No.

Does TAUT ∈ IP(2) imply NP = co-NP? No.

To state what TAUT ∈ IP(2) implies, we need more definitions.
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Reviewing NP

Recall
A ∈ NP if there exists poly p and set B ∈ P such that

A = {x : (∃y , |y | ≤ p(|x |)[(x , y) ∈ B]}.

Notation We use ∃p and ∀p to mean the variable is bounded by
poly in the length of an understood input.

A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[(x , y) ∈ B]}.
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If GI is NPC then . . .

1) From TAUT ∈ IP(2) can show that Σ3 = Π3.

2) From TAUT ∈ IP(2) can show that Σ2 = Π2 (this takes more
effort).

Most people thing that the poly hierarchy is proper and hence that
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