BILL AND NATHAN START RECORDING

HW 03 Solutions

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$.

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

ション ふゆ アメビア メロア しょうくしゃ

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

ション ふゆ アメビア メロア しょうくしゃ

 $Q' = Q \cup \{s'\}.$

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

ション ふゆ アメビア メロア しょうくしゃ

```
Q' = Q \cup \{s'\}.
```

Start state is s'.

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

ション ふゆ アメビア メロア しょうくしゃ

$$Q' = Q \cup \{s'\}.$$
Start state is s' .

 $F'=F\cup\{s'\}.$

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

```
Q' = Q \cup \{s'\}.
Start state is s'.
F' = F \cup \{s'\}.
\delta'(s', e) = s
```

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

ション ふぼう メリン メリン しょうくしゃ

```
Q' = Q \cup \{s'\}.
Start state is s'.
F' = F \cup \{s'\}.
\delta'(s', e) = s
For all f \in F, \delta'(f, e) = s'
```

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

```
\begin{array}{l} Q' = Q \cup \{s'\}.\\ \text{Start state is } s'.\\ F' = F \cup \{s'\}.\\ \delta'(s',e) = s\\ \text{For all } f \in F, \ \delta'(f,e) = s'\\ \text{For all } q \in Q \text{ and } \sigma \in \Sigma, \ \delta'(q,\sigma) = \delta(q,\sigma). \end{array}
```

Let *L* be regular via DFA $(Q, \Sigma, \delta, s, F)$. Write down an NFA $(Q', \Sigma, \delta', s', F')$ for L^* .

See slide 66 titled Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA's δ' returns a set of states. If it only returns 1 state we write (say) q rather than $\{q\}$.

```
Q' = Q \cup \{s'\}.
Start state is s'.
F' = F \cup \{s'\}.
\delta'(s', e) = s
For all f \in F, \delta'(f, e) = s'
For all q \in Q and \sigma \in \Sigma, \delta'(q, \sigma) = \delta(q, \sigma).
See next slide for an exercise YOU SHOULD DO
```

Problem 1: Coda

Some students took the DFA and

Problem 1: Coda

Some students took the DFA and $\forall f \in F$ added an *e*-transition from *f* to *s*

Problem 1: Coda

Some students took the DFA and $\forall f \in F$ added an *e*-transition from *f* to *s* and


```
Some students took the DFA and \forall f \in F added an e-transition from f to s and made the start state a final state.
```

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

```
Some students took the DFA and \forall f \in F added an e-transition from f to s and made the start state a final state.
```

Give a DFA for which this does not work.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

In this problem $\Sigma = \{a, b, c\}$. Let *L* be the set of all *w* such that the following hold:

(ロト (個) (E) (E) (E) (E) のへの

In this problem $\Sigma = \{a, b, c\}$. Let *L* be the set of all *w* such that the following hold:

- $\#_a(w) \equiv 1 \pmod{3}$, AND
- ▶ $\#_b(w) \equiv 2 \pmod{4}$, AND
- $\blacktriangleright \#_c(w) \equiv 3 \pmod{5}.$

In this problem $\Sigma = \{a, b, c\}$. Let *L* be the set of all *w* such that the following hold:

*ロト *目 * * * * * * * * * * * * * * *

• $\#_a(w) \equiv 1 \pmod{3}$, AND

•
$$\#_b(w) \equiv 2 \pmod{4}$$
, AND

 $\blacktriangleright \#_c(w) \equiv 3 \pmod{5}.$

Write a DFA for *L* in table form. Give Q, δ, s, F . (We already know Σ .)

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

$$Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$$

$$Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$$

 $s = (0, 0, 0)$

$$Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$$

s = (0,0,0)
$$F = \{(1,2,3)\}.$$

$$\begin{aligned} &Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\} \\ &s = (0, 0, 0) \\ &F = \{(1, 2, 3)\}. \end{aligned}$$

Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you

・ロト・日本・ヨト・ヨト・日・ つへぐ

wrote out all 180 transitions in the table.

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) $F = \{(1, 2, 3)\}.$ Since there are 3 × 4 × 5 = 60 states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

ション ふゆ アメビア メロア しょうくしゃ

You can write the table with 3 transitions using algebra.

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) $F = \{(1, 2, 3)\}.$ Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all $0 \le i \le 2$, $0 \le j \le 3$, $0 \le k \le 5$:

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}.

Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all $0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$: $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}.

Since there are $3\times 4\times 5=60$ states and $|\Sigma|=3,$ some of you wrote out all 180 transitions in the table.

ション ふゆ アメビア メロア しょうくしゃ

You can write the table with 3 transitions using algebra.

For all
$$0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$$
:
 $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$
 $\delta((i, j, k), b) = (i, j + 1 \pmod{4}, k)$

 $Q = \{(i, j, k): 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}. Since there are 2 × 4 × 5 = 60 states and |\S| = 2 some i

Since there are $3\times 4\times 5=60$ states and $|\Sigma|=3,$ some of you wrote out all 180 transitions in the table.

ション ふゆ アメビア メロア しょうくしゃ

You can write the table with 3 transitions using algebra.

For all
$$0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$$
:
 $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$
 $\delta((i, j, k), b) = (i, j + 1 \pmod{4}, k)$
 $\delta((i, j, k), c) = (i, j, k + 1 \pmod{5})$

 $Q = \{(i, j, k) : 0 \le i \le 2 \text{ and } 0 \le j \le 3 \text{ and } 0 \le k \le 4\}$ s = (0, 0, 0) F = {(1, 2, 3)}.

Since there are $3 \times 4 \times 5 = 60$ states and $|\Sigma| = 3$, some of you wrote out all 180 transitions in the table.

ション ふゆ アメビア メロア しょうくしゃ

You can write the table with 3 transitions using algebra.

For all
$$0 \le i \le 2, 0 \le j \le 3, 0 \le k \le 5$$
:
 $\delta((i, j, k), a) = (i + 1 \pmod{3}, j, k)$
 $\delta((i, j, k), b) = (i, j + 1 \pmod{4}, k)$
 $\delta((i, j, k), c) = (i, j, k + 1 \pmod{5})$

In the future do these problems the easy way.

Give an NFA for $L = \{a^i : i \neq 100\}$. that has substantially less than 100 states.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Give an NFA for $L = \{a^i : i \neq 100\}$. that has substantially less than 100 states.

We just sketch the proof giving the parameters. For a correct answer you need to actually give me the NFA.

Give an NFA for $L = \{a^i : i \neq 100\}$. that has substantially less than 100 states.

We just sketch the proof giving the parameters. For a correct answer you need to actually give me the NFA.

ション ふゆ アメビア メロア しょうくしゃ

We do it in two parts and then combine them.

◆□▶ ◆圖▶ ◆喜▶ ◆喜▶ 言 - ∽��?

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100. For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100. For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n. Create an NFA with which has a tail of length 11 and then a loop of size 11, and a shortcut which is size 10.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100. For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n. Create an NFA with which has a tail of length 11 and then a loop of size 11, and a shortcut which is size 10. This NFA:

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100.

For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop of size 11, and a shortcut which is size 10.

This NFA:

1) accepts $\{a^i : i \ge 101\}$ and some a^i with $i \le 99$.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n.

Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100.

For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop of size 11, and a shortcut which is size 10.

This NFA:

- 1) accepts $\{a^i : i \ge 101\}$ and some a^i with $i \le 99$.
- 2) DOES NOT accept a^{100} .

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89.

For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100.

For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop of size 11, and a shortcut which is size 10.

This NFA:

- 1) accepts $\{a^i : i \ge 101\}$ and some a^i with $i \le 99$.
- 2) DOES NOT accept a^{100} .

3) Number of states: Loop has 11, tail has 11, but they share a state, so 11+11-1=21 states.

Chicken McNugget: We want x, y rel prime and close to $\sqrt{100}$. We take x = 10, y = 11. xy - x - y = 89. There is no $c, d \in \mathbb{N}$ such that cx + dy = 89. For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n.

For every $n \ge 90$ there is $c, d \in \mathbb{N}$ such that cx + dy = n. Hence

There is no $c, d \in \mathbb{N}$ such that cx + dy + 11 = 100.

For every $n \ge 101$ there is $c, d \in \mathbb{N}$ such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop of size 11, and a shortcut which is size 10.

This NFA:

- 1) accepts $\{a^i : i \ge 101\}$ and some a^i with $i \le 99$.
- 2) DOES NOT accept a^{100} .

3) Number of states: Loop has 11, tail has 11, but they share a state, so 11+11-1=21 states.

We call this NFA M_c (*c* for chicken).

We need a set of primes whose product is \geq 100. $2\times3\times5\times7=$ 210.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We need a set of primes whose product is \geq 100. 2 × 3 × 5 × 7 = 210. Let M_2 , M_3 , M_5 , M_7 be DFA for:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We need a set of primes whose product is ≥ 100 . $2 \times 3 \times 5 \times 7 = 210$. Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}$.

We need a set of primes whose product is ≥ 100 . $2 \times 3 \times 5 \times 7 = 210$. Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}$. M_3 : $\{a^i : i \neq 100 \pmod{3}\} = \{a^i : i \equiv 0, 2 \pmod{3}\}$.

We need a set of primes whose product is ≥ 100 . $2 \times 3 \times 5 \times 7 = 210$. Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}$. M_3 : $\{a^i : i \neq 100 \pmod{3}\} = \{a^i : i \equiv 0, 2 \pmod{3}\}$. M_5 : $\{a^i : i \neq 100 \pmod{5}\} = \{a^i : i \equiv 1, 2, 3, 4 \pmod{5}\}$.

We need a set of primes whose product is ≥ 100 . $2 \times 3 \times 5 \times 7 = 210$. Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i: i \neq 100 \pmod{2}\} = \{a^i: i \equiv 1 \pmod{2}\}$. M_3 : $\{a^i: i \neq 100 \pmod{3}\} = \{a^i: i \equiv 0, 2 \pmod{3}\}$. M_5 : $\{a^i: i \neq 100 \pmod{5}\} = \{a^i: i \equiv 1, 2, 3, 4 \pmod{5}\}$. M_7 : $\{a^i: i \neq 100 \pmod{7}\} = \{a^i: i \equiv 0, 1, 3, 4, 5, 6 \pmod{7}\}$.

ション ふぼう メリン メリン しょうくしゃ

We need a set of primes whose product is ≥ 100 . $2 \times 3 \times 5 \times 7 = 210$. Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}$. M_3 : $\{a^i : i \neq 100 \pmod{3}\} = \{a^i : i \equiv 0, 2 \pmod{3}\}$. M_5 : $\{a^i : i \neq 100 \pmod{5}\} = \{a^i : i \equiv 1, 2, 3, 4 \pmod{5}\}$. M_7 : $\{a^i : i \neq 100 \pmod{7}\} = \{a^i : i \equiv 0, 1, 3, 4, 5, 6 \pmod{7}\}$. This set of DFAs

ション ふゆ アメビア メロア しょうくしゃ

We need a set of primes whose product is ≥ 100 . $2 \times 3 \times 5 \times 7 = 210$. Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}$. M_3 : $\{a^i : i \neq 100 \pmod{3}\} = \{a^i : i \equiv 0, 2 \pmod{3}\}$. M_5 : $\{a^i : i \neq 100 \pmod{5}\} = \{a^i : i \equiv 1, 2, 3, 4 \pmod{5}\}$. M_7 : $\{a^i : i \neq 100 \pmod{7}\} = \{a^i : i \equiv 0, 1, 3, 4, 5, 6 \pmod{7}\}$. This set of DFAs 1) accepts $\{a^i : i \leq 99\}$ and some a^i with $i \geq 101$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶ ◆□◆

We need a set of primes whose product is > 100. $2 \times 3 \times 5 \times 7 = 210$ Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}.$ M_3 : $\{a^i : i \neq 100 \pmod{3}\} = \{a^i : i \equiv 0, 2 \pmod{3}\}.$ M_5 : $\{a^i : i \neq 100 \pmod{5}\} = \{a^i : i \equiv 1, 2, 3, 4 \pmod{5}\}.$ M_7 : $\{a^i : i \neq 100 \pmod{7}\} = \{a^i : i \equiv 0, 1, 3, 4, 5, 6 \pmod{7}\}.$ This set of DFAs 1) accepts $\{a^i : i \leq 99\}$ and some a^i with $i \geq 101$. 2) DOES NOT accept a^{100} .

We need a set of primes whose product is > 100. $2 \times 3 \times 5 \times 7 = 210$ Let M_2 , M_3 , M_5 , M_7 be DFA for: M_2 : $\{a^i : i \neq 100 \pmod{2}\} = \{a^i : i \equiv 1 \pmod{2}\}.$ M_3 : $\{a^i : i \neq 100 \pmod{3}\} = \{a^i : i \equiv 0, 2 \pmod{3}\}.$ M_5 : $\{a^i : i \neq 100 \pmod{5}\} = \{a^i : i \equiv 1, 2, 3, 4 \pmod{5}\}.$ M_7 : $\{a^i : i \neq 100 \pmod{7}\} = \{a^i : i \equiv 0, 1, 3, 4, 5, 6 \pmod{7}\}.$ This set of DFAs 1) accepts $\{a^i : i \leq 99\}$ and some a^i with $i \geq 101$. 2) DOES NOT accept a^{100} . 3) Has 2 + 3 + 5 + 7 = 17 states.

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

(ロト (個) (E) (E) (E) (E) のへの

The M_c will accept all a^i with $i \ge 101$.

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

The M_c will accept all a^i with $i \ge 101$.

The collection M_2 , M_3 , M_5 , M_7 will accept all a^i with $i \leq 99$.

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

The M_c will accept all a^i with $i \ge 101$.

The collection M_2 , M_3 , M_5 , M_7 will accept all a^i with $i \le 99$. This NFA will not accept a^{100} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

The M_c will accept all a^i with $i \ge 101$.

The collection M_2 , M_3 , M_5 , M_7 will accept all a^i with $i \le 99$. This NFA will not accept a^{100} .

This NFA has a start state (1) and *e*-transitions to machines with 21, 2, 3, 5, 7 states.

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

The M_c will accept all a^i with $i \ge 101$.

The collection M_2 , M_3 , M_5 , M_7 will accept all a^i with $i \le 99$. This NFA will not accept a^{100} .

This NFA has a start state (1) and *e*-transitions to machines with 21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

The NFA we want has a start state that has an *e*-transition to M_c , M_2 , M_3 , M_5 , M_7 .

The M_c will accept all a^i with $i \ge 101$.

The collection M_2 , M_3 , M_5 , M_7 will accept all a^i with $i \le 99$. This NFA will not accept a^{100} .

This NFA has a start state (1) and *e*-transitions to machines with 21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.