
BILL AND NATHAN
START RECORDING

HW 03 Solutions

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).

Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.

Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.

Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.

δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1

Let L be regular via DFA (Q,Σ, δ, s,F).
Write down an NFA (Q ′,Σ, δ′, s ′,F ′) for L∗.

See slide 66 titled
Reg Langs Closed Under *?-Picture-3rd Try

Here is the NFA with one convention: Formally an NFA’s δ′

returns a set of states. If it only returns 1 state we write (say) q
rather than {q}.
Q ′ = Q ∪ {s ′}.
Start state is s ′.

F ′ = F ∪ {s ′}.
δ′(s ′, e) = s

For all f ∈ F , δ′(f , e) = s ′

For all q ∈ Q and σ ∈ Σ, δ′(q, σ) = δ(q, σ).

See next slide for an exercise YOU SHOULD DO

Problem 1: Coda

Some students took the DFA and

∀f ∈ F added an e-transition from f to s
and
made the start state a final state.

Give a DFA for which this does not work.

Problem 1: Coda

Some students took the DFA and
∀f ∈ F added an e-transition from f to s

and
made the start state a final state.

Give a DFA for which this does not work.

Problem 1: Coda

Some students took the DFA and
∀f ∈ F added an e-transition from f to s
and

made the start state a final state.

Give a DFA for which this does not work.

Problem 1: Coda

Some students took the DFA and
∀f ∈ F added an e-transition from f to s
and
made the start state a final state.

Give a DFA for which this does not work.

Problem 1: Coda

Some students took the DFA and
∀f ∈ F added an e-transition from f to s
and
made the start state a final state.

Give a DFA for which this does not work.

Problem 2

In this problem Σ = {a, b, c}. Let L be the set of all w such that
the following hold:

I #a(w) ≡ 1 (mod 3), AND

I #b(w) ≡ 2 (mod 4), AND

I #c(w) ≡ 3 (mod 5)}.

Write a DFA for L in table form. Give Q, δ, s,F .
(We already know Σ.)

Problem 2

In this problem Σ = {a, b, c}. Let L be the set of all w such that
the following hold:

I #a(w) ≡ 1 (mod 3), AND

I #b(w) ≡ 2 (mod 4), AND

I #c(w) ≡ 3 (mod 5)}.

Write a DFA for L in table form. Give Q, δ, s,F .
(We already know Σ.)

Problem 2

In this problem Σ = {a, b, c}. Let L be the set of all w such that
the following hold:

I #a(w) ≡ 1 (mod 3), AND

I #b(w) ≡ 2 (mod 4), AND

I #c(w) ≡ 3 (mod 5)}.

Write a DFA for L in table form. Give Q, δ, s,F .
(We already know Σ.)

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}

s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.

Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:

δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)

δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)

δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

The Solution

Q = {(i , j , k) : 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3 and 0 ≤ k ≤ 4}
s = (0, 0, 0)

F = {(1, 2, 3)}.
Since there are 3× 4× 5 = 60 states and |Σ| = 3, some of you
wrote out all 180 transitions in the table.

You can write the table with 3 transitions using algebra.

For all 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 5:
δ((i , j , k), a) = (i + 1 (mod 3), j , k)
δ((i , j , k), b) = (i , j + 1 (mod 4), k)
δ((i , j , k), c) = (i , j , k + 1 (mod 5))

In the future do these problems the easy way.

Problem 3

Give an NFA for L = {ai : i 6= 100}.
that has substantially less than 100 states.

We just sketch the proof giving the parameters. For a correct
answer you need to actually give me the NFA.

We do it in two parts and then combine them.

Problem 3

Give an NFA for L = {ai : i 6= 100}.
that has substantially less than 100 states.

We just sketch the proof giving the parameters. For a correct
answer you need to actually give me the NFA.

We do it in two parts and then combine them.

Problem 3

Give an NFA for L = {ai : i 6= 100}.
that has substantially less than 100 states.

We just sketch the proof giving the parameters. For a correct
answer you need to actually give me the NFA.

We do it in two parts and then combine them.

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11.

xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.

Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.

This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:

1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.

2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.

3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.

We call this NFA Mc (c for chicken).

Chicken M

Chicken McNugget: We want x , y rel prime and close to
√

100.

We take x = 10, y = 11. xy − x − y = 89.

There is no c , d ∈ N such that cx + dy = 89.
For every n ≥ 90 there is c , d ∈ N such that cx + dy = n.
Hence

There is no c , d ∈ N such that cx + dy + 11 = 100.
For every n ≥ 101 there is c , d ∈ N such that cx + dy + 11 = n.

Create an NFA with which has a tail of length 11 and then a loop
of size 11, and a shortcut which is size 10.
This NFA:
1) accepts {ai : i ≥ 101} and some ai with i ≤ 99.
2) DOES NOT accept a100.
3) Number of states: Loop has 11, tail has 11, but they share a
state, so 11+11-1=21 states.
We call this NFA Mc (c for chicken).

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.

Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:

M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.

M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.

M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.

M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.

This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs

1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.

2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.

3) Has 2 + 3 + 5 + 7 = 17 states.

Primes

We need a set of primes whose product is ≥ 100.
2× 3× 5× 7 = 210.
Let M2, M3, M5, M7 be DFA for:
M2: {ai : i 6= 100 (mod 2)} = {ai : i ≡ 1 (mod 2)}.
M3: {ai : i 6= 100 (mod 3)} = {ai : i ≡ 0, 2 (mod 3)}.
M5: {ai : i 6= 100 (mod 5)} = {ai : i ≡ 1, 2, 3, 4 (mod 5)}.
M7: {ai : i 6= 100 (mod 7)} = {ai : i ≡ 0, 1, 3, 4, 5, 6 (mod 7)}.
This set of DFAs
1) accepts {ai : i ≤ 99} and some ai with i ≥ 101.
2) DOES NOT accept a100.
3) Has 2 + 3 + 5 + 7 = 17 states.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

Finish

The NFA we want has a start state that has an e-transition to
Mc , M2, M3, M5, M7.

The Mc will accept all ai with i ≥ 101.

The collection M2, M3, M5, M7 will accept all ai with i ≤ 99.

This NFA will not accept a100.

This NFA has a start state (1) and e-transitions to machines with
21, 2, 3, 5, 7 states.

So this NFA has 1 + 21 + 2 + 3 + 5 + 7 = 39 states.

There may be a smaller NFA but not much smaller.

