BILL START RECORDING

HW06 Solutions

Give a CFG for the following.

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$ $B \rightarrow bB \mid e$

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$ $B \rightarrow bB \mid e$

Give a CFG for the following.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$ $B \rightarrow bB \mid e$

Give a CFG for the following.

 $\{w: \#_a(w) \equiv 1 \pmod{3}\}.$

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$ $B \rightarrow bB \mid e$

Give a CFG for the following.

 $\{w: \#_a(w) \equiv 1 \pmod{3}\}.$ $S \to BaBT$

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$ $B \rightarrow bB \mid e$

Give a CFG for the following.

 $\{w: \#_a(w) \equiv 1 \pmod{3}\}.$ $S \to BaBT$ $T \to BaBaBaBT \mid e$

Give a CFG for the following. $\{w: \#_a(w) \equiv 0 \pmod{3}\}.$ $S \rightarrow BaBaBaBS \mid e$ $S \rightarrow B$ $B \rightarrow bB \mid e$

Give a CFG for the following.

 $\{w: \#_a(w) \equiv 1 \pmod{3}\}.$ $S \to BaBT$ $T \to BaBaBaBT \mid e$ $B \to bB \mid e$

Give a context free grammar for $\overline{\{a^n b^n c^n \colon n \in \mathbb{N}\}}$.

Give a context free grammar for $\overline{\{a^n b^n c^n \colon n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n \colon n \in \mathbb{N}\}$ then either I) The letters are in the wrong order:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Give a context free grammar for $\overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Give a context free grammar for $\overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Give a context free grammar for $\overline{\{a^n b^n c^n \colon n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n \colon n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$.

ション ふゆ アメリア メリア しょうくしゃ

Give a context free grammar for $\overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$.

II) Letters in the correct order but number of letters wrong.

ション ふぼう メリン メリン しょうくしゃ

Give a context free grammar for $\overline{\{a^n b^n c^n \colon n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n \colon n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$. II) Letters in the correct order but number of letters wrong.

 $\{a^{n_1}b^{n_2}c*: n_1 < n_2\}$ (we do this one)

Give a context free grammar for $\{a^n b^n c^n : n \in \mathbb{N}\}$. If $w \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$. Letters in the correct order but number of letters wrong. $\{a^{n_1}b^{n_2}c^*: n_1 < n_2\}$ (we do this one) $\{a^{n_1}b^{n_2}c*: n_1 > n_2\}.$

Give a context free grammar for $\{a^n b^n c^n : n \in \mathbb{N}\}$. If $w \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$. Letters in the correct order but number of letters wrong. $\{a^{n_1}b^{n_2}c^*: n_1 < n_2\}$ (we do this one) $\{a^{n_1}b^{n_2}c*: n_1 > n_2\}.$ $\{a^{n_1}b^*c^{n_2}: n_1 < n_2\}.$

Give a context free grammar for $\{a^n b^n c^n : n \in \mathbb{N}\}$. If $w \notin \{a^n b^n c^n : n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$. Letters in the correct order but number of letters wrong. $\{a^{n_1}b^{n_2}c^*: n_1 < n_2\}$ (we do this one) $\{a^{n_1}b^{n_2}c*: n_1 > n_2\}.$ $\{a^{n_1}b^*c^{n_2}: n_1 < n_2\}.$

 ${a^{n_1}b^*c^{n_2}: n_1 > n_2}.$

Give a context free grammar for $\overline{\{a^n b^n c^n \colon n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n \colon n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$. II) Letters in the correct order but number of letters wrong. $\{a^{n_1} b^{n_2} c^* \colon n_1 < n_2\}$ (we do this one)

 $\{a^{n_1}b^{n_2}c^*: n_1 > n_2\}. \\ \{a^{n_1}b^*c^{n_2}: n_1 < n_2\}. \\ \{a^{n_1}b^*c^{n_2}: n_1 > n_2\}. \\ \{a^*b^{n_1}c^{n_2}: n_1 < n_2\}.$

Give a context free grammar for $\overline{\{a^n b^n c^n \colon n \in \mathbb{N}\}}$. If $w \notin \{a^n b^n c^n \colon n \in \mathbb{N}\}$ then either I) The letters are in the wrong order: $w \in \{a, b, c\}^* ba\{a, b, c\}^*$, or (We do this one) $w \in \{a, b, c\}^* cb\{a, b, c\}^*$, or $w \in \{a, b, c\}^* ca\{a, b, c\}^*$. II) Letters in the correct order but number of letters wrong. $\{a^{n_1} b^{n_2} c^* \colon n_1 < n_2\}$ (we do this one)

ション ふぼう メリン メリン しょうくしゃ

$$\{a^{n_1}b^{n_2}c*:n_1>n_2\}.$$

$$\{ a^{n_1}b^*c^{n_2} : n_1 < n_2 \}. \\ \{ a^{n_1}b^*c^{n_2} : n_1 > n_2 \}. \\ \{ a^*b^{n_1}c^{n_2} : n_1 < n_2 \}. \\ \{ a^*b^{n_1}c^{n_2} : n_1 > n_2 \}.$$

To solve this problem you would do 9 CFG's for the 9 sets in the last slide.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

To solve this problem you would do 9 CFG's for the 9 sets in the last slide.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

You would have the *i*th one use start symbol S_i .

To solve this problem you would do 9 CFG's for the 9 sets in the last slide.

You would have the *i*th one use start symbol S_i .

Then the CFG is the union of those 9 CFGS along with start symbol S and the rule

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

To solve this problem you would do 9 CFG's for the 9 sets in the last slide.

You would have the *i*th one use start symbol S_i .

Then the CFG is the union of those 9 CFGS along with start symbol S and the rule

 $S \rightarrow S_1 \mid S_2 \mid S_3 \mid S_4 \mid S_5 \mid S_6 \mid S_7 \mid S_8 \mid S_9$

To solve this problem you would do 9 CFG's for the 9 sets in the last slide.

You would have the *i*th one use start symbol S_i .

Then the CFG is the union of those 9 CFGS along with start symbol S and the rule

 $S \rightarrow S_1 \mid S_2 \mid S_3 \mid S_4 \mid S_5 \mid S_6 \mid S_7 \mid S_8 \mid S_9$

We show grammars for one of the 9 sets. The rest are either similar or very easy.

Out of Order!

We show a CFG for $\{a, b, c\}^* ba\{a, b, c\}^*$

Out of Order!

We show a CFG for $\{a, b, c\}^* ba\{a, b, c\}^*$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

S
ightarrow X ba X

Out of Order!

We show a CFG for $\{a, b, c\}^* ba\{a, b, c\}^*$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$S
ightarrow X ba X \ X
ightarrow a X \mid b X \mid c X \mid e$$

The Count is Wrong!

We show a CFG for CFG for $\{a^{n_1}b^{n_2}c*: n_1 < n_2\}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Count is Wrong!

We show a CFG for CFG for $\{a^{n_1}b^{n_2}c*: n_1 < n_2\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

S
ightarrow aXbbBC

We show a CFG for CFG for $\{a^{n_1}b^{n_2}c*: n_1 < n_2\}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

S
ightarrow aXbbBC $X
ightarrow aXb \mid e$ We show a CFG for CFG for $\{a^{n_1}b^{n_2}c*: n_1 < n_2\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

 $S \rightarrow aXbbBC$ $X \rightarrow aXb \mid e$ $S \rightarrow bBC$ $B \rightarrow bB \mid e$ We show a CFG for CFG for $\{a^{n_1}b^{n_2}c*: n_1 < n_2\}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

 $S \rightarrow aXbbBC$ $X \rightarrow aXb \mid e$ $S \rightarrow bBC$ $B \rightarrow bB \mid e$ $C \rightarrow cC \mid e$

4) If
$$\alpha = (\alpha_1 \cup \alpha_2)$$
 then

<ロト (個) (目) (目) (日) (の)</p>

4) If
$$\alpha = (\alpha_1 \cup \alpha_2)$$
 then
 $G_1 = (N_1, \Sigma, R_1, S_1)$: CFG for $L(\alpha_1)$. $|R_1| \le f(|\alpha_1|)$.

<ロト (個) (目) (目) (日) (の)</p>

4) If $\alpha = (\alpha_1 \cup \alpha_2)$ then $G_1 = (N_1, \Sigma, R_1, S_1)$: CFG for $L(\alpha_1)$. $|R_1| \le f(|\alpha_1|)$. $G_2 = (N_2, \Sigma, R_2, S_2)$: CFG for $L(\alpha_2)$. $|R_2| \le f(|\alpha_2|)$.

4) If
$$\alpha = (\alpha_1 \cup \alpha_2)$$
 then
 $G_1 = (N_1, \Sigma, R_1, S_1)$: CFG for $L(\alpha_1)$. $|R_1| \le f(|\alpha_1|)$.
 $G_2 = (N_2, \Sigma, R_2, S_2)$: CFG for $L(\alpha_2)$. $|R_2| \le f(|\alpha_2|)$.
 $G = (N_1 \cup N_2, \Sigma, R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}, S)$.

4) If
$$\alpha = (\alpha_1 \cup \alpha_2)$$
 then
 $G_1 = (N_1, \Sigma, R_1, S_1)$: CFG for $L(\alpha_1)$. $|R_1| \le f(|\alpha_1|)$.
 $G_2 = (N_2, \Sigma, R_2, S_2)$: CFG for $L(\alpha_2)$. $|R_2| \le f(|\alpha_2|)$.
 $G = (N_1 \cup N_2, \Sigma, R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}, S)$.
 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

4) If
$$\alpha = (\alpha_1 \cup \alpha_2)$$
 then
 $G_1 = (N_1, \Sigma, R_1, S_1)$: CFG for $L(\alpha_1)$. $|R_1| \le f(|\alpha_1|)$.
 $G_2 = (N_2, \Sigma, R_2, S_2)$: CFG for $L(\alpha_2)$. $|R_2| \le f(|\alpha_2|)$.
 $G = (N_1 \cup N_2, \Sigma, R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}, S)$.
 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$
Note that $|\alpha| = |\alpha_1| + |\alpha_2| + 3$.

4) If
$$\alpha = (\alpha_1 \cup \alpha_2)$$
 then
 $G_1 = (N_1, \Sigma, R_1, S_1)$: CFG for $L(\alpha_1)$. $|R_1| \le f(|\alpha_1|)$.
 $G_2 = (N_2, \Sigma, R_2, S_2)$: CFG for $L(\alpha_2)$. $|R_2| \le f(|\alpha_2|)$.
 $G = (N_1 \cup N_2, \Sigma, R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}, S)$.
 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$
Note that $|\alpha| = |\alpha_1| + |\alpha_2| + 3$.
See next slide for exciting finish!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$f(|\alpha|) \leq f(|\alpha_1|) + f(|\alpha_2|) + 1$

$$f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$$

|\alpha| = |\alpha_1| + |\alpha_2| + 3.

$$f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$$

|\alpha| = |\alpha_1| + |\alpha_2| + 3.

Want to solve the recurrence

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$ $|\alpha| = |\alpha_1| + |\alpha_2| + 3.$ Want to solve the recurrence

 $f(n) \leq f(n_1) + f(n_2) + 1$ where $n = n_1 + n_2 + 3$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$ $|\alpha| = |\alpha_1| + |\alpha_2| + 3.$ Want to solve the recurrence $f(n) \le f(n_1) + f(n_2) + 1 \text{ where } n = n_1 + n_2 + 3.$ Assume f(n) = An + B and solve for A, B

 $f(|\alpha|) \leq f(|\alpha_1|) + f(|\alpha_2|) + 1$ $|\alpha| = |\alpha_1| + |\alpha_2| + 3.$ Want to solve the recurrence $f(n) \leq f(n_1) + f(n_2) + 1 \text{ where } n = n_1 + n_2 + 3.$ Assume f(n) = An + B and solve for A, B $An + B \leq An_1 + B + An_2 + B + 1 = A(n_1 + n_2) + 2B + 1$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$ $|\alpha| = |\alpha_1| + |\alpha_2| + 3.$ Want to solve the recurrence $f(n) \le f(n_1) + f(n_2) + 1 \text{ where } n = n_1 + n_2 + 3.$ Assume f(n) = An + B and solve for A, B $An + B \le An_1 + B + An_2 + B + 1 = A(n_1 + n_2) + 2B + 1$ $An + B \le A(n_1 + n_2 + 3) - 3A + 2B + 1 = An - 3A + 2B + 1.$

 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$ $|\alpha| = |\alpha_1| + |\alpha_2| + 3.$ Want to solve the recurrence $f(n) \le f(n_1) + f(n_2) + 1 \text{ where } n = n_1 + n_2 + 3.$ Assume f(n) = An + B and solve for A, B $An + B \le An_1 + B + An_2 + B + 1 = A(n_1 + n_2) + 2B + 1$ $An + B \le A(n_1 + n_2 + 3) - 3A + 2B + 1 = An - 3A + 2B + 1.$ B < -3A + 2B + 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 $f(|\alpha|) \le f(|\alpha_1|) + f(|\alpha_2|) + 1$ $|\alpha| = |\alpha_1| + |\alpha_2| + 3.$ Want to solve the recurrence $f(n) \leq f(n_1) + f(n_2) + 1$ where $n = n_1 + n_2 + 3$. Assume f(n) = An + B and solve for A, B $An + B < An_1 + B + An_2 + B + 1 = A(n_1 + n_2) + 2B + 1$ $An + B < A(n_1 + n_2 + 3) - 3A + 2B + 1 = An - 3A + 2B + 1.$ B < -3A + 2B + 1. 3A < B + 1Take A = 1 and B = 3. SO f(n) = n + 3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The cases of $\alpha = \alpha_1 \alpha_2$ and $\alpha = \beta^*$ are similar.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

The cases of $\alpha = \alpha_1 \alpha_2$ and $\alpha = \beta^*$ are similar. We were careful and got f(n) = n + 3.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

The cases of $\alpha = \alpha_1 \alpha_2$ and $\alpha = \beta^*$ are similar. We were careful and got f(n) = n + 3.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

FINE to use f(n) = O(n) or similar.

The cases of $\alpha = \alpha_1 \alpha_2$ and $\alpha = \beta^*$ are similar. We were careful and got f(n) = n + 3.

FINE to use f(n) = O(n) or similar.

Notice that the CFG is in Chomsky NF even though we did not require that.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1) Input n

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

1) Input n

2) Create the DFA on n^2 states for L_n .

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

1) Input *n*

- 2) Create the DFA on n^2 states for L_n .
- 3) Use R(i, j, k) to get a regex α for L_n of length $2^{O(n)}$.

ション ふゆ アメリア メリア しょうくしゃ

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

1) Input *n*

- 2) Create the DFA on n^2 states for L_n .
- 3) Use R(i, j, k) to get a regex α for L_n of length $2^{O(n)}$.
- 4) Use Part a to get a CFG for α of size $(2^{O(n)})^2 = 2^{O(n)}$.

ション ふゆ アメリア メリア しょうくしゃ

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

1) Input *n*

- 2) Create the DFA on n^2 states for L_n .
- 3) Use R(i, j, k) to get a regex α for L_n of length $2^{O(n)}$.
- 4) Use Part a to get a CFG for α of size $(2^{O(n)})^2 = 2^{O(n)}$.

So $f(n) = 2^{O(n)}$. Note also that the grammar will be in CNF.

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

1) Input *n*

- 2) Create the DFA on n^2 states for L_n .
- 3) Use R(i, j, k) to get a regex α for L_n of length $2^{O(n)}$.

4) Use Part a to get a CFG for α of size $(2^{O(n)})^2 = 2^{O(n)}$.

So $f(n) = 2^{O(n)}$. Note also that the grammar will be in CNF. Question Is there a CFG for L_n with p(n) rules for some polynomial p? Is there one in CNF?

 $L_n = \{w \colon \#_a(w) \equiv 0 \pmod{n} \land \#_b(w) \equiv 0 \pmod{n}\}$ has a CFG with O(g(n)) rules.

1) Input *n*

- 2) Create the DFA on n^2 states for L_n .
- 3) Use R(i, j, k) to get a regex α for L_n of length $2^{O(n)}$.
- 4) Use Part a to get a CFG for α of size $(2^{O(n)})^2 = 2^{O(n)}$.

So $f(n) = 2^{O(n)}$. Note also that the grammar will be in CNF.

Question Is there a CFG for L_n with p(n) rules for some polynomial p? Is there one in CNF?

On HW07 we show there is a way to go from a DFA to a CFG in CNF with linear blowup so YES, we can do better.