
BILL START
RECORDING



Midterm Solutions



Problem 2a

There is an algorithm that will, given an NFA M of size n, return a
DFA for L(M) of size FILLIN.

PUT ANSWER HERE:
2n.
Short Explanation (not needed on midterm): This is the Power
set construction.



Problem 2a

There is an algorithm that will, given an NFA M of size n, return a
DFA for L(M) of size FILLIN.

PUT ANSWER HERE:
2n.

Short Explanation (not needed on midterm): This is the Power
set construction.



Problem 2a

There is an algorithm that will, given an NFA M of size n, return a
DFA for L(M) of size FILLIN.

PUT ANSWER HERE:
2n.
Short Explanation (not needed on midterm): This is the Power
set construction.



Problem 2b

There is an algorithm that will, given a DFA M of size n, return a
regex for L(M) of size FILLIN.

PUT ANSWER HERE:
2O(n).
Short Explanation (not needed on midterm): This is the
R(i , j , k) construction.
Grading: We accepted 2n, O(2n) even though technically they are
not correct.



Problem 2b

There is an algorithm that will, given a DFA M of size n, return a
regex for L(M) of size FILLIN.

PUT ANSWER HERE:
2O(n).

Short Explanation (not needed on midterm): This is the
R(i , j , k) construction.
Grading: We accepted 2n, O(2n) even though technically they are
not correct.



Problem 2b

There is an algorithm that will, given a DFA M of size n, return a
regex for L(M) of size FILLIN.

PUT ANSWER HERE:
2O(n).
Short Explanation (not needed on midterm): This is the
R(i , j , k) construction.

Grading: We accepted 2n, O(2n) even though technically they are
not correct.



Problem 2b

There is an algorithm that will, given a DFA M of size n, return a
regex for L(M) of size FILLIN.

PUT ANSWER HERE:
2O(n).
Short Explanation (not needed on midterm): This is the
R(i , j , k) construction.
Grading: We accepted 2n, O(2n) even though technically they are
not correct.



Problem 2c

There is an algorithm that will, given a regex α of size n, return an
NFA for L(α) of size FILLIN.

PUT ANSWER HERE:
O(n).
Short Explanation (not needed on midterm): This is done
inductively based on the definition of a regex. We use the closure
properties of NFA’s.



Problem 2c

There is an algorithm that will, given a regex α of size n, return an
NFA for L(α) of size FILLIN.

PUT ANSWER HERE:
O(n).

Short Explanation (not needed on midterm): This is done
inductively based on the definition of a regex. We use the closure
properties of NFA’s.



Problem 2c

There is an algorithm that will, given a regex α of size n, return an
NFA for L(α) of size FILLIN.

PUT ANSWER HERE:
O(n).
Short Explanation (not needed on midterm): This is done
inductively based on the definition of a regex. We use the closure
properties of NFA’s.



Problem 3a

There is an algorithm that will, given an DFA M of sizes n, return
a CFG for L(M) and it will have FILLIN number of rules. (The
CFG need not be in Chomsky Normal Form.)

PUT ANSWER HERE:
O(n).
Short Explanation (not needed on midterm): This was the
problem I had you look up how to do for HW07.
Interesting The grammar produces has most of the rules in the
form needed for Chomsky Normal Form even though this is not
required. The only rules that are not in that form are of the form
A→ e.



Problem 3a

There is an algorithm that will, given an DFA M of sizes n, return
a CFG for L(M) and it will have FILLIN number of rules. (The
CFG need not be in Chomsky Normal Form.)

PUT ANSWER HERE:
O(n).

Short Explanation (not needed on midterm): This was the
problem I had you look up how to do for HW07.
Interesting The grammar produces has most of the rules in the
form needed for Chomsky Normal Form even though this is not
required. The only rules that are not in that form are of the form
A→ e.



Problem 3a

There is an algorithm that will, given an DFA M of sizes n, return
a CFG for L(M) and it will have FILLIN number of rules. (The
CFG need not be in Chomsky Normal Form.)

PUT ANSWER HERE:
O(n).
Short Explanation (not needed on midterm): This was the
problem I had you look up how to do for HW07.

Interesting The grammar produces has most of the rules in the
form needed for Chomsky Normal Form even though this is not
required. The only rules that are not in that form are of the form
A→ e.



Problem 3a

There is an algorithm that will, given an DFA M of sizes n, return
a CFG for L(M) and it will have FILLIN number of rules. (The
CFG need not be in Chomsky Normal Form.)

PUT ANSWER HERE:
O(n).
Short Explanation (not needed on midterm): This was the
problem I had you look up how to do for HW07.
Interesting The grammar produces has most of the rules in the
form needed for Chomsky Normal Form even though this is not
required. The only rules that are not in that form are of the form
A→ e.



Problem 3b

There is an algorithm that will, given n, return a
Chomsky Normal Form CFG for

{e, a, a2, . . . , an}

which has FILLIN nonterminals.

PUT ANSWER HERE:
O(log n).
Short Explanation (not needed on midterm): This was the
problem I had you do on HW07.
Grading Some students wrote O(n1/3). This is not correct. I will
discuss the issue after Problem 3.



Problem 3b

There is an algorithm that will, given n, return a
Chomsky Normal Form CFG for

{e, a, a2, . . . , an}

which has FILLIN nonterminals.

PUT ANSWER HERE:
O(log n).

Short Explanation (not needed on midterm): This was the
problem I had you do on HW07.
Grading Some students wrote O(n1/3). This is not correct. I will
discuss the issue after Problem 3.



Problem 3b

There is an algorithm that will, given n, return a
Chomsky Normal Form CFG for

{e, a, a2, . . . , an}

which has FILLIN nonterminals.

PUT ANSWER HERE:
O(log n).
Short Explanation (not needed on midterm): This was the
problem I had you do on HW07.

Grading Some students wrote O(n1/3). This is not correct. I will
discuss the issue after Problem 3.



Problem 3b

There is an algorithm that will, given n, return a
Chomsky Normal Form CFG for

{e, a, a2, . . . , an}

which has FILLIN nonterminals.

PUT ANSWER HERE:
O(log n).
Short Explanation (not needed on midterm): This was the
problem I had you do on HW07.
Grading Some students wrote O(n1/3). This is not correct. I will
discuss the issue after Problem 3.



Problem 3c

There is an algorithm that will, given n and some

X ⊆ {e, a, a2, . . . , an},

returns a Chomsky Normal Form CFG for X which has FILLIN
nonterminals. FILLIN depends only on n, e.g O(n log n) (THIS IS
NOT THE ANSWER).

PUT ANSWER HERE:
O(n1/3)
Grading This is the lecture CFG’s for Finite Unary Languages.
Which version of Chomsky to use? In the lecture I allowed
A→ BCD. Normally I do not. Students asked which to use.
YOU CAN USE A→ BCD since all I am using O-notation.
I will discuss the contrast between 3b and 3c on the next slide.



Problem 3c

There is an algorithm that will, given n and some

X ⊆ {e, a, a2, . . . , an},

returns a Chomsky Normal Form CFG for X which has FILLIN
nonterminals. FILLIN depends only on n, e.g O(n log n) (THIS IS
NOT THE ANSWER).

PUT ANSWER HERE:
O(n1/3)

Grading This is the lecture CFG’s for Finite Unary Languages.
Which version of Chomsky to use? In the lecture I allowed
A→ BCD. Normally I do not. Students asked which to use.
YOU CAN USE A→ BCD since all I am using O-notation.
I will discuss the contrast between 3b and 3c on the next slide.



Problem 3c

There is an algorithm that will, given n and some

X ⊆ {e, a, a2, . . . , an},

returns a Chomsky Normal Form CFG for X which has FILLIN
nonterminals. FILLIN depends only on n, e.g O(n log n) (THIS IS
NOT THE ANSWER).

PUT ANSWER HERE:
O(n1/3)
Grading This is the lecture CFG’s for Finite Unary Languages.

Which version of Chomsky to use? In the lecture I allowed
A→ BCD. Normally I do not. Students asked which to use.
YOU CAN USE A→ BCD since all I am using O-notation.
I will discuss the contrast between 3b and 3c on the next slide.



Problem 3c

There is an algorithm that will, given n and some

X ⊆ {e, a, a2, . . . , an},

returns a Chomsky Normal Form CFG for X which has FILLIN
nonterminals. FILLIN depends only on n, e.g O(n log n) (THIS IS
NOT THE ANSWER).

PUT ANSWER HERE:
O(n1/3)
Grading This is the lecture CFG’s for Finite Unary Languages.
Which version of Chomsky to use? In the lecture I allowed
A→ BCD. Normally I do not. Students asked which to use.

YOU CAN USE A→ BCD since all I am using O-notation.
I will discuss the contrast between 3b and 3c on the next slide.



Problem 3c

There is an algorithm that will, given n and some

X ⊆ {e, a, a2, . . . , an},

returns a Chomsky Normal Form CFG for X which has FILLIN
nonterminals. FILLIN depends only on n, e.g O(n log n) (THIS IS
NOT THE ANSWER).

PUT ANSWER HERE:
O(n1/3)
Grading This is the lecture CFG’s for Finite Unary Languages.
Which version of Chomsky to use? In the lecture I allowed
A→ BCD. Normally I do not. Students asked which to use.
YOU CAN USE A→ BCD since all I am using O-notation.

I will discuss the contrast between 3b and 3c on the next slide.



Problem 3c

There is an algorithm that will, given n and some

X ⊆ {e, a, a2, . . . , an},

returns a Chomsky Normal Form CFG for X which has FILLIN
nonterminals. FILLIN depends only on n, e.g O(n log n) (THIS IS
NOT THE ANSWER).

PUT ANSWER HERE:
O(n1/3)
Grading This is the lecture CFG’s for Finite Unary Languages.
Which version of Chomsky to use? In the lecture I allowed
A→ BCD. Normally I do not. Students asked which to use.
YOU CAN USE A→ BCD since all I am using O-notation.
I will discuss the contrast between 3b and 3c on the next slide.



CFG’s for Finite Unary Languages: Number of NTs

Here is what I proved.

1) There is a CNFG for A = {e, a, a2, . . . , an} that uses O(n1/3)
NTs. This CFGN is not optimal for number of NTs; however it
has a nice property:
For every w ∈ A there is a rule that, if removed, will remove ONLY
w from the set of strings generated.

2) USING (1) I showed that for every X ⊆ {e, a, a2, . . . , an} there
is a CNFG that generates X and has O(n1/3) NTs.

3) Can the O(n1/3) be improved. No: ∃ X ⊆ {e, a, a2, . . . , an}
such that every CNFG for X has Ω(n1/3) NTs

4) Is there a better CFGN for the original language A? On HW07
we showed YES, there is a CFGN for A with O(log n) NTs.



CFG’s for Finite Unary Languages: Number of NTs

Here is what I proved.
1) There is a CNFG for A = {e, a, a2, . . . , an} that uses O(n1/3)
NTs. This CFGN is not optimal for number of NTs; however it
has a nice property:

For every w ∈ A there is a rule that, if removed, will remove ONLY
w from the set of strings generated.

2) USING (1) I showed that for every X ⊆ {e, a, a2, . . . , an} there
is a CNFG that generates X and has O(n1/3) NTs.

3) Can the O(n1/3) be improved. No: ∃ X ⊆ {e, a, a2, . . . , an}
such that every CNFG for X has Ω(n1/3) NTs

4) Is there a better CFGN for the original language A? On HW07
we showed YES, there is a CFGN for A with O(log n) NTs.



CFG’s for Finite Unary Languages: Number of NTs

Here is what I proved.
1) There is a CNFG for A = {e, a, a2, . . . , an} that uses O(n1/3)
NTs. This CFGN is not optimal for number of NTs; however it
has a nice property:
For every w ∈ A there is a rule that, if removed, will remove ONLY
w from the set of strings generated.

2) USING (1) I showed that for every X ⊆ {e, a, a2, . . . , an} there
is a CNFG that generates X and has O(n1/3) NTs.

3) Can the O(n1/3) be improved. No: ∃ X ⊆ {e, a, a2, . . . , an}
such that every CNFG for X has Ω(n1/3) NTs

4) Is there a better CFGN for the original language A? On HW07
we showed YES, there is a CFGN for A with O(log n) NTs.



CFG’s for Finite Unary Languages: Number of NTs

Here is what I proved.
1) There is a CNFG for A = {e, a, a2, . . . , an} that uses O(n1/3)
NTs. This CFGN is not optimal for number of NTs; however it
has a nice property:
For every w ∈ A there is a rule that, if removed, will remove ONLY
w from the set of strings generated.

2) USING (1) I showed that for every X ⊆ {e, a, a2, . . . , an} there
is a CNFG that generates X and has O(n1/3) NTs.

3) Can the O(n1/3) be improved. No: ∃ X ⊆ {e, a, a2, . . . , an}
such that every CNFG for X has Ω(n1/3) NTs

4) Is there a better CFGN for the original language A? On HW07
we showed YES, there is a CFGN for A with O(log n) NTs.



CFG’s for Finite Unary Languages: Number of NTs

Here is what I proved.
1) There is a CNFG for A = {e, a, a2, . . . , an} that uses O(n1/3)
NTs. This CFGN is not optimal for number of NTs; however it
has a nice property:
For every w ∈ A there is a rule that, if removed, will remove ONLY
w from the set of strings generated.

2) USING (1) I showed that for every X ⊆ {e, a, a2, . . . , an} there
is a CNFG that generates X and has O(n1/3) NTs.

3) Can the O(n1/3) be improved. No: ∃ X ⊆ {e, a, a2, . . . , an}
such that every CNFG for X has Ω(n1/3) NTs

4) Is there a better CFGN for the original language A? On HW07
we showed YES, there is a CFGN for A with O(log n) NTs.



CFG’s for Finite Unary Languages: Number of NTs

Here is what I proved.
1) There is a CNFG for A = {e, a, a2, . . . , an} that uses O(n1/3)
NTs. This CFGN is not optimal for number of NTs; however it
has a nice property:
For every w ∈ A there is a rule that, if removed, will remove ONLY
w from the set of strings generated.

2) USING (1) I showed that for every X ⊆ {e, a, a2, . . . , an} there
is a CNFG that generates X and has O(n1/3) NTs.

3) Can the O(n1/3) be improved. No: ∃ X ⊆ {e, a, a2, . . . , an}
such that every CNFG for X has Ω(n1/3) NTs

4) Is there a better CFGN for the original language A? On HW07
we showed YES, there is a CFGN for A with O(log n) NTs.



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.

I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!

Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).

Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)

We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11,

GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,

GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0

GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.

GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.

Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Problem 4

Let L1 = {ai : i 6= 109}.
Want NFA for L1 that has much less than 109 states.
Don’t want NFA. Want x , y , t primes,and number of states.
I have talked about this kind of problem a lot!
Need x , y REL PRIME: xy − x − y + 1 ≤ 109 (but close).
Take x = 11 and y = 12: xy − x − y = 109 CANNOT be written
as a sum of 11’s and 12’s but everything larger can. So x = 11,
y = 12, t = 0. (There are other x , y , t that work.)
We need PRIMES that had product ≥ 110. 2× 3× 5× 7 = 210.

GIVE x HERE: 11, GIVE y HERE: 12,GIVE t HERE: 0
GIVE THE PRIMES HERE: 2, 3, 5, 7.
GIVE THE NUMBER OF STATES HERE:
1 + 11 + 12 + 2 + 3 + 5 + 7 = 41.
Grading NEED to have x , y rel prime. NEED to have the primes
are primes (some students included 1- we did not penalize for that
on the midterm but will on the final).



Point of Problem 4 That Got Lost

Originally I was going to ask about 109 and 108 and have you find
that

The NFA for 109 and less states than the NFA for 108.

This would be interesting: The number of states is not strictly
increasing.



Point of Problem 4 That Got Lost

Originally I was going to ask about 109 and 108 and have you find
that
The NFA for 109 and less states than the NFA for 108.

This would be interesting: The number of states is not strictly
increasing.



Point of Problem 4 That Got Lost

Originally I was going to ask about 109 and 108 and have you find
that
The NFA for 109 and less states than the NFA for 108.

This would be interesting: The number of states is not strictly
increasing.



Problem 5

For this problem Σ = {a, b}.

a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.

b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.

w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.

S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]

[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]

[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...

[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]

[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a

[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.

2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.

Grading Notes on Next Slide



Problem 5

For this problem Σ = {a, b}.
a) Give an algorithm that will do the following:
Given a string w , outputs a Chomsky Normal Form CFG G such
that L(G ) = {w} (so G generates w and nothing else). Your
algorithm can use DOT DOT DOT.
b) f such that your grammar had O(f (n)) rules.
w = σ1 · · ·σn.
S → [σ1][σ2 · · ·σn]
[σ2 · · ·σn]→ [σ2][σ3 · · ·σn]
[σ3 · · ·σn]→ [σ3][σ4 · · ·σn]
...
[σn−1σn]→ [σn−1][σn]
[a]→ a
[b]→ b.
2) This has O(n) rules so f (n) = n.
Grading Notes on Next Slide



Problem 5-Grading

1) Grammar WRONG or VERY UNCLEAR but DO say f (n) = n.
Student gets 5 points. The 5 points are generous on our part since
they clearly did not come from your incorrect grammar. If you ask
for a regrade request you will lose those 5 points.
2) Grammar is probably correct (done recursively) but f (n) = log n
is given. This is incorrect and provably so: there are w of length n
that require Ω(n) rules. Student gets 10 points.
3) Some students did a DFA for {w} and used theorem to to from
DFA to CFG. This is not quite CNF but we allowed it. A very
strange way to do the problem. DO NOT do this on the final.
4) Some students used that every regex is a CFL. I don’t know off
hand if you get a CNF grammar but we allowed it (prob close to
CNF and might even BE CNF). A very strange way to do the
problem. DO NOT do this on the final.



Problem 5-Grading

1) Grammar WRONG or VERY UNCLEAR but DO say f (n) = n.
Student gets 5 points. The 5 points are generous on our part since
they clearly did not come from your incorrect grammar. If you ask
for a regrade request you will lose those 5 points.

2) Grammar is probably correct (done recursively) but f (n) = log n
is given. This is incorrect and provably so: there are w of length n
that require Ω(n) rules. Student gets 10 points.
3) Some students did a DFA for {w} and used theorem to to from
DFA to CFG. This is not quite CNF but we allowed it. A very
strange way to do the problem. DO NOT do this on the final.
4) Some students used that every regex is a CFL. I don’t know off
hand if you get a CNF grammar but we allowed it (prob close to
CNF and might even BE CNF). A very strange way to do the
problem. DO NOT do this on the final.



Problem 5-Grading

1) Grammar WRONG or VERY UNCLEAR but DO say f (n) = n.
Student gets 5 points. The 5 points are generous on our part since
they clearly did not come from your incorrect grammar. If you ask
for a regrade request you will lose those 5 points.
2) Grammar is probably correct (done recursively) but f (n) = log n
is given. This is incorrect and provably so: there are w of length n
that require Ω(n) rules. Student gets 10 points.

3) Some students did a DFA for {w} and used theorem to to from
DFA to CFG. This is not quite CNF but we allowed it. A very
strange way to do the problem. DO NOT do this on the final.
4) Some students used that every regex is a CFL. I don’t know off
hand if you get a CNF grammar but we allowed it (prob close to
CNF and might even BE CNF). A very strange way to do the
problem. DO NOT do this on the final.



Problem 5-Grading

1) Grammar WRONG or VERY UNCLEAR but DO say f (n) = n.
Student gets 5 points. The 5 points are generous on our part since
they clearly did not come from your incorrect grammar. If you ask
for a regrade request you will lose those 5 points.
2) Grammar is probably correct (done recursively) but f (n) = log n
is given. This is incorrect and provably so: there are w of length n
that require Ω(n) rules. Student gets 10 points.
3) Some students did a DFA for {w} and used theorem to to from
DFA to CFG. This is not quite CNF but we allowed it. A very
strange way to do the problem. DO NOT do this on the final.

4) Some students used that every regex is a CFL. I don’t know off
hand if you get a CNF grammar but we allowed it (prob close to
CNF and might even BE CNF). A very strange way to do the
problem. DO NOT do this on the final.



Problem 5-Grading

1) Grammar WRONG or VERY UNCLEAR but DO say f (n) = n.
Student gets 5 points. The 5 points are generous on our part since
they clearly did not come from your incorrect grammar. If you ask
for a regrade request you will lose those 5 points.
2) Grammar is probably correct (done recursively) but f (n) = log n
is given. This is incorrect and provably so: there are w of length n
that require Ω(n) rules. Student gets 10 points.
3) Some students did a DFA for {w} and used theorem to to from
DFA to CFG. This is not quite CNF but we allowed it. A very
strange way to do the problem. DO NOT do this on the final.
4) Some students used that every regex is a CFL. I don’t know off
hand if you get a CNF grammar but we allowed it (prob close to
CNF and might even BE CNF). A very strange way to do the
problem. DO NOT do this on the final.



Problem 6

Give an algorithm that does the following:
On input a Context Free Grammar G that generates L output a
context free grammar that generates LR .

Given a CFG (V ,Σ,R,S) do the following:
Replace every rule of the form A→ α with A→ αR .
DONE

Note Many of you used Chomsky Normal Form. Thats fine but
not needed.



Problem 6

Give an algorithm that does the following:
On input a Context Free Grammar G that generates L output a
context free grammar that generates LR .

Given a CFG (V ,Σ,R, S) do the following:
Replace every rule of the form A→ α with A→ αR .

DONE

Note Many of you used Chomsky Normal Form. Thats fine but
not needed.



Problem 6

Give an algorithm that does the following:
On input a Context Free Grammar G that generates L output a
context free grammar that generates LR .

Given a CFG (V ,Σ,R, S) do the following:
Replace every rule of the form A→ α with A→ αR .
DONE

Note Many of you used Chomsky Normal Form. Thats fine but
not needed.



Problem 6

Give an algorithm that does the following:
On input a Context Free Grammar G that generates L output a
context free grammar that generates LR .

Given a CFG (V ,Σ,R, S) do the following:
Replace every rule of the form A→ α with A→ αR .
DONE

Note Many of you used Chomsky Normal Form. Thats fine but
not needed.


