Proving That a Language Is Not Regular

A finite automaton knows
That counting takes fingers and toes,

A finite automaton knows
That counting takes fingers and toes,

But, footless and handless, It tries, never endless,

A finite automaton knows
That counting takes fingers and toes,

But, footless and handless, It tries, never endless,

To follow n I's with n O's.

Three ways to represent regular languages (so far)

Three ways to represent regular languages (so far)

► DFA

Three ways to represent regular languages (so far)

- ► DFA
- ► NFA

Three ways to represent regular languages (so far)

- ► DFA
- ► NFA
- Regular expressions

Three ways to represent regular languages (so far)

- ▶ DFA
- ▶ NFA
- Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

Three ways to represent regular languages (so far)

- ▶ DFA
- ▶ NFA
- ► Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

Why?

Two Methods of Proof

Two Methods of Proof

▶ Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.

Two Methods of Proof

- Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.
- ► Method 2—Pumping Lemma: Run the DFA on one long word. By the PHP the word must visit the same state twice. Then do some magic.

Method 1

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular

► DFA's only have finite memory.

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular

- ▶ DFA's only have finite memory.
- ► A DFA has to "remember" the length of an arbitrarily long sequence of a's when processing the b's.

$$L_1 = \{a^n b^n : n \ge 0\}$$
 is Not Regular

- ▶ DFA's only have finite memory.
- ▶ A DFA has to "remember" the length of an arbitrarily long sequence of a's when processing the b's.

Intuition is not proof.

Proof

$$L_1 = \{a^n b^n : n \ge 0\}$$
 is Not Regular

Proof Assume L_1 is regular via DFA M with m states.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both a^ib^i and a^jb^i They will end up in the same state q.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j ($i \neq j$), end in same state p. Run M on both a^ib^i and a^jb^i They will end up in the same state q. Hence M either

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j ($i \neq j$), end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

1. Accepts both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j ($i \neq j$), end in same state p. Run M on both a^ib^i and a^jb^i They will end up in the same state q. Hence M either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states.

Run *M* on $a^0, a^1, a^2, ..., a^m$.

By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p.

Run M on both $a^i b^i$ and $a^j b^i$

They will end up in the same state q.

Hence *M* either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Proof Assume L_1 is regular via DFA M with m states.

Run *M* on $a^0, a^1, a^2, ..., a^m$.

By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p.

Run M on both $a^i b^i$ and $a^j b^i$

They will end up in the same state q.

Hence *M* either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with m states can only "remember" m pieces of information.

Proof Assume L_1 is regular via DFA M with m states.

Run *M* on $a^0, a^1, a^2, ..., a^m$.

By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p.

Run M on both $a^i b^i$ and $a^j b^i$

They will end up in the same state q.

Hence *M* either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

Proof Assume L_1 is regular via DFA M with m states.

Run *M* on $a^0, a^1, a^2, ..., a^m$.

By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p.

Run M on both $a^i b^i$ and $a^j b^i$

They will end up in the same state q.

Hence *M* either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

We do not care.

Method 2: Pumping Lemma

 $L_1 = \{a^n b^n : n \ge 0\}$ is Not Regular: Alt Proof

Proof

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular: Alt Proof

Proof Assume L_1 is regular via DFA M with m states.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

$$q_0, q_1, q_2, \ldots, q_{m-1}$$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By PHP some state is encountered twice.

Proof Assume L_1 is regular via DFA M with m states.

Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By **PHP** some state is encountered twice.

So there is a loop at that state where $k \ge 1$ a's are processed.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By **PHP** some state is encountered twice.

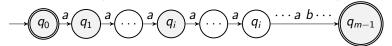
So there is a loop at that state where $k \ge 1$ a's are processed.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By **PHP** some state is encountered twice.

So there is a loop at that state where $k \ge 1$ a's are processed.



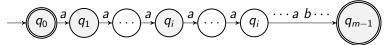
Can put more a's into the first part to loop and still accepted.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By **PHP** some state is encountered twice.

So there is a loop at that state where $k \ge 1$ a's are processed.



Can put more a's into the first part to loop and still accepted. So some $a^{n+k}b^n$ accepted—Contradiction.

 $L_2 = \{w : \#_a(w) = \#_b(w)\}$ is not regular.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Exactly the same Proof

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Exactly the same Proof
Assume L_1 is regular via DFA M with m states.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Exactly the same Proof
Assume L_1 is regular via DFA M with m states.
Run M on $a^m b^m$.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Proof

Assume L_1 is regular via DFA M with m states.

Run M on $a^m b^m$.

States encountered processing a^m :

$$s_0, s_1, s_2, \ldots, s_m$$

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Proof

Assume L_1 is regular via DFA M with m states.

Run M on a^mb^m .

States encountered processing a^m :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Proof

Assume L_1 is regular via DFA M with m states.

Run M on a^mb^m .

States encountered processing a^m :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Proof

Assume L_1 is regular via DFA M with m states.

Run M on $a^m b^m$.

States encountered processing a^m :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again.

Contradiction.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Proof

Assume L_1 is regular via DFA M with m states.

Run M on a^mb^m .

States encountered processing a^m :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again.

Contradiction.

This idea can be formalized into the pumping lemma ...

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Proof

Assume L_1 is regular via DFA M with m states.

Run M on a^mb^m .

States encountered processing a^m :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again.

Contradiction.

This idea can be formalized into the pumping lemma ...

... and we will do so.

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1. w = xyz and $y \neq e$.

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^iz \in L$.

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^iz \in L$.

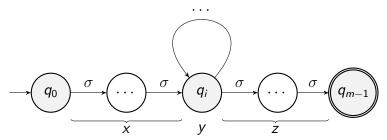
Proof by picture

Pumping Lemma If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^iz \in L$.

Proof by picture



We restate it in the way that we use it.

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exist x, y, z such that:

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exist x, y, z such that:

1. w = xyz and $y \neq e$.

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |*xy*| **is short**.
- 3. for all i, $xy^iz \in L$.

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |*xy*| **is short**.
- 3. for all i, $xy^iz \in L$.

We then find some i such that $xy^iz \notin L$ for the contradiction.

REDO: $L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 is regular.

Assume L_1 is regular.

By Pumping Lemma, for long $a^n b^n \in L_1$, $\exists x, y, z$:

Assume L_1 is regular.

By Pumping Lemma, for long $a^n b^n \in L_1$, $\exists x, y, z$:

1. $y \neq e$.

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$.

Assume L_1 is regular.

By Pumping Lemma, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $v = a^k$, $z = a^{n-j-k}b^n$. Note k > 1.

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

$$x = a^j$$
, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

By the Pumping Lemma, all of the words

Assume L_1 is regular.

By Pumping Lemma, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $v \neq e$.
- 2. |xy| is short.
- 3. For all i > 0, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^{j}$, $v = a^{k}$, $z = a^{n-j-k}b^{n}$. Note k > 1.

By the Pumping Lemma, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n}$$

Assume L_1 is regular.

By Pumping Lemma, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $v \neq e$.
- 2. |xy| is short.
- 3. For all i > 0, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^{j}$, $v = a^{k}$, $z = a^{n-j-k}b^{n}$. Note k > 1.

By the Pumping Lemma, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the Pumping Lemma, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the Pumping Lemma, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Take i = 2 to get

Assume L_1 is regular.

By Pumping Lemma, for long $a^nb^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the Pumping Lemma, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Assume L_1 is regular.

By Pumping Lemma, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's.

 $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

By the Pumping Lemma, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 .

Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Contradiction since k > 1.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is Not Regular

Proof: Same Proof as L_1 **not Reg**: Still look at a^mb^m . **Key** Pumping Lemma says for ALL long enough $w \in L$.

 $L_3 = \{w : \#_a(w) \neq \#_b(w)\}$ is Not Regular

 $L_3 = \{w : \#_a(w) \neq \#_b(w)\}$ is Not Regular

Think about.

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

Think about.

Pumping Lemma Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

Think about.

Pumping Lemma Does Not Help. When you increase the number of y's there is no way to control it so carefully to make the number of a's EQUAL the number of b's.

So what do to?

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

Think about.

Pumping Lemma Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to? Think some more. $L_3 = \{w : \#_a(w) \neq \#_b(w)\}$ is Not Regular

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

If L_3 is regular then $L_2 = \overline{L_3}$ is regular. But we know that L_2 is not regular. DONE!

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

Intuition Perfect squares keep getting further apart.

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ ($k \neq 0$), $z = a^\ell$ with $xyz = a^{n^2}$. Also

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ $(k \neq 0)$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $(\forall i \geq 0)[j + ki + \ell \text{ is a square}]$.

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ $(k \neq 0)$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $(\forall i \geq 0)[j + ki + \ell \text{ is a square}]$.

We want to sep out $j + k + \ell$ from the rest which only makes sense if $i \ge 1$ so we take weaker version with $i \ge 1$

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ $(k \neq 0)$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $(\forall i \geq 0)[j + ki + \ell \text{ is a square}]$.

We want to sep out $j+k+\ell$ from the rest which only makes sense if $i \geq 1$ so we take weaker version with $i \geq 1$ $(\forall i \geq 1)[j+ki+\ell$ is a square].

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ ($k \neq 0$), $z = a^\ell$ with $xyz = a^{n^2}$. Also $(\forall i \geq 0)[j + ki + \ell]$ is a square].

We want to sep out $j+k+\ell$ from the rest which only makes sense if $i\geq 1$ so we take weaker version with $i\geq 1$

$$(\forall i \geq 1)[j + ki + \ell \text{ is a square}].$$

$$(\forall i \geq 1)[j+k+\ell+(i-1)k \text{ is a square}].$$

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ ($k \neq 0$), $z = a^\ell$ with $xyz = a^{n^2}$. Also $(\forall i \geq 0)[j + ki + \ell \text{ is a square}]$.

We want to sep out $j+k+\ell$ from the rest which only makes sense if $i\geq 1$ so we take weaker version with $i\geq 1$

$$(\forall i \geq 1)[j + ki + \ell \text{ is a square}].$$

$$(\forall i \geq 1)[j+k+\ell+(i-1)k \text{ is a square}].$$

$$(\forall i \geq 1)[n^2 + (i-1)k \text{ is a square}].$$

Intuition Perfect squares keep getting further apart. Pumping Lemma says you can always add some constant k to produce a word in the language.

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$ ($k \neq 0$), $z = a^\ell$ with $xyz = a^{n^2}$. Also $(\forall i \geq 0)[j + ki + \ell \text{ is a square}]$.

We want to sep out $j+k+\ell$ from the rest which only makes sense if $i\geq 1$ so we take weaker version with $i\geq 1$

$$(\forall i \geq 1)[j + ki + \ell \text{ is a square}].$$

$$(\forall i \geq 1)[j+k+\ell+(i-1)k \text{ is a square}].$$

$$(\forall i \geq 1)[n^2 + (i-1)k \text{ is a square}].$$

See slide for exciting finish!

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular (cont)

$$(\forall i \geq 1)[n^2 + (i-1)k \text{ is a square}].$$

$$(\forall i \geq 1)[n^2 + (i-1)k \text{ is a square}].$$

So $n^2, n^2 + k, n^2 + 2k, \dots$ are all squares.

 $(\forall i \geq 1)[n^2 + (i-1)k \text{ is a square}].$ So $n^2, n^2 + k, n^2 + 2k, \ldots$ are all squares. See slide for exciting finish!

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$. :

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
:
So $(\forall i > 1)[n^2 + ik > (n+i)^2 = n^2 + 2in + i^2]$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
:
So $(\forall i \ge 1)[n^2 + ik \ge (n+i)^2 = n^2 + 2in + i^2]$. So $(\forall i)[k > 2n + i]$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$. $n \ge 2n + 2$. So $n \ge 2n + 2$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$. $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 4$. So $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 4$. So $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$.

$$L_5 = \{a^p : p \text{ is prime}\}$$
 is Not Regular

Intuition Primes keep getting further apart on average.

Intuition Primes keep getting further apart on average. By Pumping Lemma, for large p, $a^p \in L_5 \exists x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$a^j(a^k)^i a^\ell \in L_5$$
 $(orall i \geq 0)[j+ik+\ell ext{ is prime}].$

Intuition Primes keep getting further apart on average. By Pumping Lemma, for large p, $a^p \in L_5 \exists x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$a^{j}(a^{k})^{i}a^{\ell} \in L_{5}$$
 $(\forall i \geq 0)[j+ik+\ell \text{ is prime}].$

Discuss: can we get a contradiction out of this?

$$a^{j}(a^{k})^{i}a^{\ell}\in L_{5}$$
 $(\forall i\geq 0)[j+ik+\ell \text{ is prime}].$

$$a^j(a^k)^i a^\ell \in L_5$$
 $(orall i \geq 0)[j+ik+\ell ext{ is prime}].$

Let $i = j + \ell$.

$$a^{j}(a^{k})^{i}a^{\ell}\in L_{5}$$
 $(\forall i\geq 0)[j+ik+\ell \text{ is prime}].$

Let
$$i = j + \ell$$
.
 $j + (j + \ell)k + \ell$ is prime

$$a^j(a^k)^i a^\ell \in L_5$$
 $(\forall i \geq 0)[j+ik+\ell \text{ is prime}].$

Let
$$i = j + \ell$$
.
 $j + (j + \ell)k + \ell$ is prime
 $(j + \ell + (j + \ell)k$ is prime.

$$a^{j}(a^{k})^{i}a^{\ell} \in L_{5}$$
 $(\forall i \geq 0)[j+ik+\ell \text{ is prime}].$

Let
$$i = j + \ell$$
.
 $j + (j + \ell)k + \ell$ is prime
 $(j + \ell + (j + \ell)k$ is prime.
 $(j + \ell)(1 + k)$ is prime.
Contradiction.

(There are some cases to work out like what if $(j + \ell) = 1$ but we skip this part.)

$$L_6 = \{\#_a(w) > \#_b(w)\}$$
 is Not Regular

We will be brief here.

$$L_6 = \{\#_a(w) > \#_b(w)\}$$
 is Not Regular

We will be brief here.

Take $w = b^n a^{n+1}$, long enough so the y-part is in the b's.

$$L_6 = \{\#_a(w) > \#_b(w)\}$$
 is Not Regular

We will be brief here.

Take $w = b^n a^{n+1}$, long enough so the y-part is in the b's.

Pump the y to get more b's than a's.

Think about.

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise Pumping Lemma

Think about.

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language.

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.

Think about.

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language.

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.

Can also bound |yz| by same proof.

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.

Can also bound |yz| by same proof.

Do that and then you can get y to be all b's, pump b's, and get out of the language.

Think about.

Think about.

Problematic Neither pumping on the left or on the right works.

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$x = a^{j}$$
, $y = a^{k}$, $z = a^{n-j-k}b^{n-1}c^{n}$.

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$x = a^{j}$$
, $y = a^{k}$, $z = a^{n-j-k}b^{n-1}c^{n}$.

For all $i \geq 0$, $xy^iz \in L_8$.

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$x = a^{j}, y = a^{k}, z = a^{n-j-k}b^{n-1}c^{n}.$$

For all $i \geq 0$, $xy^iz \in L_8$.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

$$xy^{i}z=a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

$$xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

$$xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

Key We are used to thinking of *i* large.

$$xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

Key We are used to thinking of *i* large.

But we can also take i = 0.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

Key We are used to thinking of i large.

But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

Key We are used to thinking of *i* large.

But we can also take i = 0.

cut out that part of the word. We take i=0 to get

$$xy^0z=a^{n-k}b^{n-1}c^n$$

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

Key We are used to thinking of i large.

But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

$$xy^0z=a^{n-k}b^{n-1}c^n$$

Since $k \ge 1$, we have that $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$. Hence $xy^0z \notin L_8$.

$$xy^{i}z=a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

Key We are used to thinking of i large.

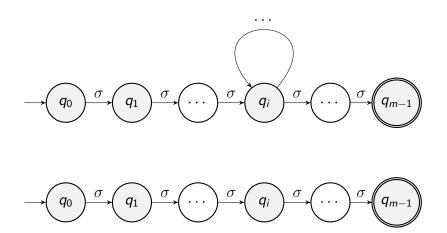
But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

$$xy^0z=a^{n-k}b^{n-1}c^n$$

Since $k \ge 1$, we have that $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$. Hence $xy^0z \notin L_8$. Contradiction.

i = 0 Case as a Picture



Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- 3. Poly-bounded Turing Machines seem to be complicated devices, so proving $P \neq NP$ seems to be hard.

Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- Poly-bounded Turing Machines seem to be complicated devices, so proving P≠NP seems to be hard. However, I expect the TA work it out by the end of the semester.
- Proving problems undecidable is surprisingly easy since such proofs do not depend on the details of the model of computation.