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Outline

1. We describe what qubits are mathematically and how they
can be used. We ignore the Physics. Physicists really can
create qubits that behave as we describe.

2. We OMIT a description of what entangled qubits however, if
Alice and Bob share entangled qbits they can communicate in
funny ways.

3. We describe the CHSH game.

4. We give a strategy for the CHSH game where (1) the 2 players
are classical, and (2) the prob of winning is 0.75. We note
that one can prove this is the best two players can do.

5. We STATE that there is a strategy for the CHSH game where
(1) the 2 players have qubits that are entangled, and (2) the
prob of winning is larger than 0.75.

6. We discuss what this all means.
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Math Needed

Def

1. Let L be the following function on vectors of complex
numbers: L(α, β) = |α|2 + |β|2. Note that L(α, β) is the
square of length of the vector (α, β).

For the rest of these slides we will assume that L is applied to
pairs of reals. We note that the use of complex numbers is
very important for quantum mechanics.

2. A 2× 2 matrix M is unitary if when, for all v , L(Mv) = L(v).
So M preserves length.

Example Let 0 ≤ θ ≤ 2π. The following matrix is unitary.

Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
This matrix rotates vectors by θ.
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Quantum Bits

Def A qubit is something in physics that has a state. The state is
an ordered pair (α, β) such that α2 + β2 = 1. If a qubit is in state
(α, β) then, when the qubit is measured, the prob that the bit is 0
is α2 and the prob the bit is 1 is β2.

Caveat A qubit can be measured in many ways:
1) Measuring the qubit in the standard basis.
2) Measure the qubit in a different basis.
We multiply the state by a unitary matrix and measure the qubit in
this new state.
So we say

We measure Mθ(v).
where v was the original state.
We will elaborate on this on the next slide.
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Measuring a Quantum Bit

If Alice has a qubit in states v = (α, β) she could do the following

1) Measure it in the standard basis. This means that (1) she
will get 0 with prob α2 and (2) she will get 1 with prob β2.

2) Measure it in basis θ
First compute Mθ(v) = w = (γ, δ) where γ2 + δ2 = 1.
Second measure w .
She will get 0 with prob γ2 and 1 with prob δ2

So she changes the state of the qubit before measuring it.
This is referred to as measuring the qubit in a different basis or
in a different frame.
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Example

Alice has a qubit in state v = (α, β) = ( 1√
2
, 1√

2
).

1) She measures the qubit in the standard basis.
she will get 0 with prob 1

2 , and
she will get 1 with prob 1

2

2) If instead she measures Mπ
6

(v) then we’ll see what happens.

Next two slides have the first and second coordinate of Mπ
6

(v)
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Example (cont)

First coordinate of Mπ
6

(v) is

cos(θ)α− sin(θ)β = cos(π6 ) 1√
2
− sin(π6 ) 1√
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√
3
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2
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√
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(√
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√
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√
3

8 ∼ 0.067

Second coordinate of Mπ
6

(v) is

sin(θ)α + cos(θ)β = sin(π6 ) 1√
2
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2

= 1
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√
3
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2

= 1+
√
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= 4+2

√
3

8 ∼ 0.933
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Upshot of Example

Alice has qubit in state v = (α, β) = ( 1√
2
, 1√

2
).

1. If she measures the qubit in the standard basis then
I Pr(0) = 1

2
I Pr(1) = 1

2 .

2. If instead she measures the qubit in bases π
6 then she

computes w = Mπ
6

(v) then

I Pr(0) ∼ 0.067.
I Pr(1) ∼ 0.933.

A rotation of 0 gave Pr(0) = 0.5, whereas a rotation of π
6 made

Pr(0) = 0.067 which is much smaller. How does θ affect Pr(0)?
as 0 ≤ θ ≤ π

4 , Pr(0) goes from 1
2 to 0.
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A rotation of 0 gave Pr(0) = 0.5, whereas a rotation of π
6 made

Pr(0) = 0.067 which is much smaller. How does θ affect Pr(0)?
as 0 ≤ θ ≤ π

4 , Pr(0) goes from 1
2 to 0.
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Measuring a Qubit Twice In Same Basis

Alice has a qubit. For this scenario both its state and the basis
Alice uses are irrelevant.

Scenario 0:

1) Alice measures qubit. Gets 0. The state is now (1, 0).
2) Bob measures qubit (in same basis). He will get 0.

Scenario 1:
1) Alice measures qubit. Gets bit 1. The state is now (0, 1).
2) Bob measures qubit (in same basis). He will get 1.

Upshot If use same basis then they will agree.
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Measuring a Qubit in Two Different Basis

Alice has a qubit in state v = (α, β).

1) Alice measures the qubit in basis θ1,

so in state w = Mθ1(v).
She gets bit b.

2) Bob measures the qubit in basis θ2,

so in state w ′ = Mθ2(w).
The prob that Bob gets b is cos2(θ1 − θ2).
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The CHSH Game

(CHSH stands for the authors of the paper this appeared in:
John Clauser, Michael Horne, Abner Shimony, Richard Holt.)

1. Charles sends Alice a bit x and Bob a bit y . Both x and y
were chosen uniformly at random.

2. Alice sends Charles a bit a. Bob sends Charles a bit b.

3. If x ∧ y = a⊕ b then Alice and Bob win.

4. The above is equivalent to the following:
If x ∧ y = 0 then Alice and Bob win if a = b.
If x ∧ y = 1 then Alice and Bob win if a 6= b.
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Classic Strategies

On the next few slides we discuss strategies with an eye towards
asking how often they win.



All 0 Strategy

Since x ∧ y is mostly 0, always make a = b. So a strong strategy is
for Alice and Bob to both send 0. (Both sending a 1 would also be
a strong strategy.)

x y a b x ∧ y a = b Wins?

0 0 0 0 0 Y Y
0 1 0 0 0 Y Y
1 0 0 0 0 Y Y
1 1 0 0 1 Y N

Alice and Bob win with probability 0.75.
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Is There a Better Strategy?

The following are known:

1. There is no deterministic strategy that can win with
probability more than 0.75.

2. There is no randomized strategy that can win with probability
more than 0.75.
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If Alice and Bob Share an EPR Pair . . .

An EPR pair are 2 qubits that affect each other, even at a
distance. We will not define them. We will just state results.

If Alice and Bob share an EPR pair then have a strategy that wins
the CHSH game with probability cos2(π/8) ∼ 0.854 > 0.75.
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What Does This Mean?

1. Physicists have actually done this in the lab.

2. This is evidence that quantum mechanics is correct.

3. There are things we can do better in the quantum world than
in the classical world.

4. This fits into our framework of upper and lower bounds on
problems in different models.
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Can Alice and Bob Do Better?

Assume Alice and Bob share an EPR pair.

Vote Which of the following is true:

1. Alice and Bob have a strategy that wins the CHSH game with
Prob p > cos2(π8 ) (approx 0.853) and this is known.

2. The best prob of winning that Alice and Bob can achieve is
cos2(π8 ) and this is known.

3. The question of if Alice and Bob can do better than cos2(π8 )
is Unknown to Science.

Comments on the answer on the next page.
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What We Know, What We Believe, Physics vs Math

All known strategies are of a certain type.

No strategy of that type can have a prob of winning > cos2(π/8).

Physicists believe that no strategy of any type can have a prob
of winning > cos2(π/8).

Proving that no strategy of any type has prob of winning
> cos2(π/8) is hard to even state rigorously, so very hard to prove.

I am glad I am in math where we have well defined problems.
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Final Thoughts

1. Classically: There is a strategy for CHSH that has prob of
winning 0.75 and it is known you cannot do better than that.

2. If Alice and Bob share an EPR pair then there is a strategy
that has prob of winning cos2(π8 ) ∼ 0.853.

3. I am amazed that with a shared EPR pair Alice and Bob can
do better.

4. I am amazed that with a shared EPR pair Alice and Bob can
do so much better. I would have have thought something
like 0.75 + ε.

5. Even with many EPR pairs and any kind of strategy Alice and
Bob cannot do better than cos2(π8 ). I am not amazed this is
true, but I am amazed its been proven. (Proof is hard.)
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