
Regular Expressions

Recognizers vs Generators

We want to write expressions that generate strings.

Recognizers vs Generators

We want to write expressions that generate strings.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.
We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.
We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.
We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.
We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.
We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.

Hence a regex has a length.
We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.

We give examples and assign meaning.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. The empty set, denoted ∅, is a regex.

2. e is a regex. Every σ ∈ Σ is a regex.

3. If α and β are regex then (α ∪ β) and (α · β) are regex.
(We often omit the ·.

4. If α is a regex then α∗ is a regex.

Let Σ = {a, b}. Then formally a regex is a string over the
alphabet {∅, a, b, ·, ∗,∪, (,)}.
Hence a regex has a length.
We give examples and assign meaning.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.

a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.

a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.

a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.

Def If α is a regex then L(α) is the set of strings it generates.

Example and Meaning

A regex represents a set

a is a regex. It represents {a}.
a∗ is a regex. It represents {e, a, aa, aaa, . . .}.
a∗b is a regex. It represents {b, ab, aab, aaab, . . .}.
a∗b ∪ b∗ is a regex. You can guess what it represents.
Def If α is a regex then L(α) is the set of strings it generates.

Examples

1. b∗(ab∗ab∗)∗ab∗

2. b∗(ab∗ab∗ab∗)∗

3. (b∗(ab∗ab∗)∗ab∗) ∪ (b∗(ab∗ab∗ab∗)∗)

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

How is Regex related to Regular?

Thm A language is generated by a regular expression if and
only if it is recognized by a finite automaton.

Pf

We know: DFA are equivalent to NFA.

Will show:
Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

QED

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.

Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

Rest of the proof on next slide.

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.

Base Cases |α| = 1. Then α = e or α = σ.

σ

Rest of the proof on next slide.

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

Rest of the proof on next slide.

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

Rest of the proof on next slide.

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

Rest of the proof on next slide.

Lemma If a language is generated by a regular expression, it
is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases |α| = 1. Then α = e or α = σ.

σ

Rest of the proof on next slide.

IH n ≥ 2. For all β, |β| < n, there is a NFA for β.

IS Let α be a regex of length n.

Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH:
NFA’s Ni for αi . Use closure of NFAs under union to get NFA
for L(N1) ∪ L(N2). This is NFA for L(α).

Case 2 α = α1 · α2. Similar. Use closure under concatenation.

Case 3 α = α∗
1. Similar. Use closure under Kleene ∗.

IH n ≥ 2. For all β, |β| < n, there is a NFA for β.
IS Let α be a regex of length n.

Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH:
NFA’s Ni for αi . Use closure of NFAs under union to get NFA
for L(N1) ∪ L(N2). This is NFA for L(α).

Case 2 α = α1 · α2. Similar. Use closure under concatenation.

Case 3 α = α∗
1. Similar. Use closure under Kleene ∗.

IH n ≥ 2. For all β, |β| < n, there is a NFA for β.
IS Let α be a regex of length n.

Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH:
NFA’s Ni for αi . Use closure of NFAs under union to get NFA
for L(N1) ∪ L(N2). This is NFA for L(α).

Case 2 α = α1 · α2. Similar. Use closure under concatenation.

Case 3 α = α∗
1. Similar. Use closure under Kleene ∗.

IH n ≥ 2. For all β, |β| < n, there is a NFA for β.
IS Let α be a regex of length n.

Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH:
NFA’s Ni for αi . Use closure of NFAs under union to get NFA
for L(N1) ∪ L(N2). This is NFA for L(α).

Case 2 α = α1 · α2. Similar. Use closure under concatenation.

Case 3 α = α∗
1. Similar. Use closure under Kleene ∗.

IH n ≥ 2. For all β, |β| < n, there is a NFA for β.
IS Let α be a regex of length n.

Case 1 α = α1 ∪ α2. Since |α1| < n, |α2| < n, apply IH:
NFA’s Ni for αi . Use closure of NFAs under union to get NFA
for L(N1) ∪ L(N2). This is NFA for L(α).

Case 2 α = α1 · α2. Similar. Use closure under concatenation.

Case 3 α = α∗
1. Similar. Use closure under Kleene ∗.

How Does Size of NFA and Regex Compare

If α was of length n then the NFA you get for it has ≤ 2n
states.

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

Pf Assume DFA has start state s and final states f1, . . . , fm.
For each fi , we will produce a regex, E (s, fi), that generates all
words recognized by starting in s and ending in final state fi .

Then the desired regex is

E (s, f1) ∪ E (s, f2) ∪ · · · ∪ E (s, fm)

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

Pf Assume DFA has start state s and final states f1, . . . , fm.

For each fi , we will produce a regex, E (s, fi), that generates all
words recognized by starting in s and ending in final state fi .

Then the desired regex is

E (s, f1) ∪ E (s, f2) ∪ · · · ∪ E (s, fm)

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

Pf Assume DFA has start state s and final states f1, . . . , fm.
For each fi , we will produce a regex, E (s, fi), that generates all
words recognized by starting in s and ending in final state fi .

Then the desired regex is

E (s, f1) ∪ E (s, f2) ∪ · · · ∪ E (s, fm)

Lemma If a language is recognized by a DFA, it is generated
by a regular expression.

Pf Assume DFA has start state s and final states f1, . . . , fm.
For each fi , we will produce a regex, E (s, fi), that generates all
words recognized by starting in s and ending in final state fi .

Then the desired regex is

E (s, f1) ∪ E (s, f2) ∪ · · · ∪ E (s, fm)

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M is in if start at q and feed in w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M is in if start at q and feed in w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M is in if start at q and feed in w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M is in if start at q and feed in w

What about the empty string?

δ(q, e) = q.

Notation: δ(q,w)

Given a DFA M = (Q,Σ, δ, s,F) we note that

δ : Q × Σ→ Q.

We can extend δ to strings

δ : Q × Σ∗ → Q.

δ(q,w) = State that M is in if start at q and feed in w

What about the empty string?

δ(q, e) = q.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information
to get our final answer.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information
to get our final answer.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information
to get our final answer.

DFA ⊆ REGEX

Given a DFA M we want a Regex for L(M).

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Why? That seems like way more than we need.

Dynamic Programming We will use all of this information
to get our final answer.

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for
R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for
R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for
R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for
R(i , j , k).

Definition of R(i , j , k)

Will assume M has state set {1, . . . , n}.
I wrote on the last slide:

Key We will find, for every pair of states (i , j) the regex that
represents strings that take you from state i to state j .

Actually we will find out a lot more information.
Will assume M has state set {1, . . . , n}.

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

For all 1 ≤ i , j ≤ n 0 ≤ k ≤ n, we will find a regex for
R(i , j , k).

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then
it must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then
it must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then
it must just be a transition.

Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then
it must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

Finding Regex for R(i , j , k)

R(i , j , k) = {w : δ(i ,w) = j but only use states in {1, . . . , k} }.

We will first find Regex for R(i , j , 0) for all 1 ≤ i , j ≤ n.

What is R(i , j , 0)?
If a string goes from i to j with no intermediary states then
it must just be a transition.
Or i = j and the string that is e.

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(1)

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n,
R(i , j , k) is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n,
R(i , j , k) is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n,
R(i , j , k) is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n,
R(i , j , k) is a Regex.

2. A dynamic program that computes all R(i , j , k).

R(i , j , 0) is a Regex. Inductive Step

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(2)

In both cases R(i , j , 0) can be expressed as a Regex.

We will now assume that for all 1 ≤ i , j ≤ n, R(i , j , k − 1) is a
Regex and prove that for all 1 ≤ i , j ≤ n, R(i , j , k) is a Regex.

This is both of the following:

1. A proof by induction on k that, for all 1 ≤ i , j ≤ n,
R(i , j , k) is a Regex.

2. A dynamic program that computes all R(i , j , k).

Inductive Step R(i , j , k) as a Picture

i

k

j

R
(i , k , k −

1)

R(k , k , k − 1)

R
(k
, j
, k
−

1)

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 1 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k , k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 1 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k , k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 1 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k , k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Complete Proof on One Slide

For all 1 ≤ i , j ≤ n:

R(i , j , 0) =

{
{σ : δ(i , σ) = j} if i 6= j }
{σ : δ(i , σ) = j} ∪ {e} if i = j }

(3)

All R(i , j , 0) are Regex.

For all 1 ≤ i , j ≤ n and all 1 ≤ k ≤ n

R(i , j , k) = R(i , j , k−1)
⋃

R(i , k , k−1)R(k , k , k−1)∗R(k , j , k−1)

If ALL R(i , j , k − 1) are Regex, then ALL R(i , j , k) are Regex.

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to
be O(1) length.

How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal
def on next page).
{a, b}∗a{a, b}n is a textbook regular expression of length
O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to
be O(1) length.
How long is {a, b}n?

{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal
def on next page).
{a, b}∗a{a, b}n is a textbook regular expression of length
O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to
be O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.

{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal
def on next page).
{a, b}∗a{a, b}n is a textbook regular expression of length
O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to
be O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!

Def A textbook regex is one that allow exponents (formal
def on next page).
{a, b}∗a{a, b}n is a textbook regular expression of length
O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to
be O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal
def on next page).

{a, b}∗a{a, b}n is a textbook regular expression of length
O(log n).

Textbook Regular Expressions

Recall that lang {a, b}∗a{a, b}n.

1. DFA requires 2n+1 states.

2. NFA can be done with n + 2 states.

3. How long is the regex for it? Regard the {a, b}∗a part to
be O(1) length.
How long is {a, b}n?
{a, b}n is not a regex.
{a, b}{a, b} · · · {a, b} is a regex, so length O(n).

However one sees things like {a, b}n in textbooks all the time!
Def A textbook regex is one that allow exponents (formal
def on next page).
{a, b}∗a{a, b}n is a textbook regular expression of length
O(log n).

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.

A trex may give a much shorter expression than a regex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every σ ∈ Σ is a trex.

2. If α and β are trex then α ∪ β and αβ are trex.

3. If α is a trex then α∗ is a trex.

4. (This is the new step.) If α is a trex and n ∈ N then αn is
a trex. We write n in binary so length is |α|+ lg n + O(1).

Clearly
there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for
some f (n) where log n� f (n)?

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for
some f (n) where log n� f (n)?

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for
some f (n) where log n� f (n)?

Regex vs Trex For Length

Ln = Σ∗aΣn

Ln has a length O(n) regex

Ln has a length O(log n) trex

Need a lower bound for length of regex for Ln.
Can we show that every regex for Ln requires length f (n) for
some f (n) where log n� f (n)?

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.

Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Regex vs Trex For Length

Assume there is a regex for Ln of size f (n) (we pick f (n) later).

Then there is an NFA for Ln of size f (n).

Then there is a DFA for Ln of size 2f (n).

Any DFA for Ln has ≥ 2n+1.

Need 2f (n) < 2n+1 to get a contradiction.

f (n) = n will suffice.
Upshot There is a lang Ln with a trex of size O(log n) but the
regex requires ≥ n. Great! We have a large size difference.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.
Maybe only people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.
Maybe only people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.
Maybe only people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.
Maybe only people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.
Maybe only people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.

Maybe only people like me care.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many
operations

2. CON There are many patterns we cannot express such as

L = {anbn : n ∈ N}

Perl Regex and Java Regex (which I won’t define)

1. PRO Can express many non-regular patterns such as L
above.

2. CON The mathematical theory is not as clean.
Maybe only people like me care.

Useful!

The following algorithm is actually used in grep and other
pattern recognizers

1. Input regex α, a pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state
blowup will be reasonable).

4. Run the DFA M on a text to find where the pattern
occurs.

Useful!

The following algorithm is actually used in grep and other
pattern recognizers

1. Input regex α, a pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state
blowup will be reasonable).

4. Run the DFA M on a text to find where the pattern
occurs.

Useful!

The following algorithm is actually used in grep and other
pattern recognizers

1. Input regex α, a pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state
blowup will be reasonable).

4. Run the DFA M on a text to find where the pattern
occurs.

Useful!

The following algorithm is actually used in grep and other
pattern recognizers

1. Input regex α, a pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state
blowup will be reasonable).

4. Run the DFA M on a text to find where the pattern
occurs.

Useful!

The following algorithm is actually used in grep and other
pattern recognizers

1. Input regex α, a pattern you want to search for.

2. Create an NFA N for α as in the last slide.

3. Convert the NFA N to a DFA M (usually the state
blowup will be reasonable).

4. Run the DFA M on a text to find where the pattern
occurs.

