
A Small NFA for
{ai : i 6= 1000}



YOU”VE BEEN PUNKED!

The last slide of the last talk said that

L = {ai : i 6= 1000}

requires an NFA of size ∼ 1000.

And that the proof used Ramsey Theory.

I did that in case someone cheated on the vote and looked
ahead.

Actually L can be done with a smaller NFA.
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Overall Method

Two NFA’s:

NFA A:
I Does NOT accept a1000.
I Accepts all words longer than 1000.
I We have no comment on what it does on

words ≤ 999.

NFA B:
I Does NOT accept a1000.
I Accepts all words shorter than 1000.
I We have no comment on what it does on

words ≥ 1001.

Create the union of NFA’s A and B .
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Sums of 32’s and 33’s

Thm

1. For all n ≥ 992 there exists x , y ∈ N such that
n = 32x + 33y .

2. There does not exist x , y ∈ N such that 991 = 32x + 33y .

Write down this theorem! Will prove on next few slides and
you need to know what I am proving.
We will prove this by induction.
Base Case 992 = 32× 31 + 33× 0.
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(∀n ≥ 992)(∃x, y ∈ N)[n = 32x + 33y ]

Inductive Hypothesis n ≥ 993 and
(∃x ′, y ′)[n − 1 = 32x ′ + 33y ′].

Intuition Want to swap coins in and out to increase by 1. Can
swap out a 32-coin and put in a 33-coin if I HAVE a 32-coin.
Case 1 x ′ ≥ 1. Then n = 32(x ′ − 1) + 33(y ′ + 1).
Intuition What to do if x ′ = 0. Need to remove some 33’s
and add some 32’s. Use that
32× 32− 31× 33 = 1024− 1023 = 1. Can swap out 31
33-coins and put in 32 32-coinsif I HAVE 31 33-coins.
Case 2 y ′ ≥ 31. Then n = 32(x ′ + 32) + 33(y ′ − 31).
Case 3 x ′ ≤ 0 and y ′ ≤ 30. Then
n− 1 = 32x ′ + 33y ′ ≤ 33× 30 = 990 < 993, so cannot occur.
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There is no x, y ∈ N with 991 = 32x + 33y

Pf by contradiction.
Assume there exists x , y ∈ N such that

991 = 32x + 33y

Then

991 ≡ 32x + 33y (mod 32)

31 ≡ 0x + 1y (mod 32)

31 ≡ y (mod 32) So y ≥ 31

991 = 32x + 33y ≥ 32x + 33× 31 ≥ 1023 Contradiction!
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Sums of 32’s and 33’s and ONE 9
Thm
1) For all n ≥ 1001 there exists x , y ∈ N such that
n = 32x + 33y + 9.

2) There does not exist x , y ∈ N such that 1000 = 32x + 33y + 9.
Pf
1) If n ≥ 1001 then n − 9 ≥ 992 so by prior Thm

(∃x , y ∈ N)[n − 9 = 32x + 33y ]

(∃x , y ∈ N)[n = 32x + 33y + 9]

2) Assume, by way of contradiction,

(∃x , y)[1000 = 32x + 33y + 9]

(∃x , y)[992 = 32x + 33y ]

This contradicts prior Thm.
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Number of States for {ai : i ≥ 1001}

1. Start state

2. A chain of 9 states including the start state.

3. A loop of 33 states. The shortcut on 32 does not affect the
number of states.

Total number of states: 9 + 33 = 42.
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Still Need NFA B

Idea

1000 ≡ 0 (mod 2) SO want to accept {ai : i 6≡ 0 (mod 2)}.
2-state DFA.

1000 ≡ 1 (mod 3) SO want to accept {ai : i 6≡ 1 (mod 3)}.
3-state DFA.

1000 ≡ 0 (mod 5) SO want to accept {ai : i 6≡ 0 (mod 5)}.
5-state DFA.

1000 ≡ 6 (mod 7) SO want to accept {ai : i 6≡ 6 (mod 7)}.
7-state DFA.

1000 ≡ 10 (mod 11) SO want to accept {ai : i 6≡ 10 (mod 11)}.
11-state DFA.
Could go on to 13,17, etc. But we will see we can stop here.
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

Thm Let M be the NFA from the last slide.
M(a1000) is rejected. This is obvious.
For all 0 ≤ i ≤ 999, M(ai ) is accepted.

Pf We show that if M(ai ) is rejected then i ≥ 1000. Assume
M(ai ) rejected. Then
i ≡ 0 (mod 2)
i ≡ 1 (mod 3)
i ≡ 0 (mod 5)
i ≡ 6 (mod 7)
i ≡ 10 (mod 11)
Continued on next slide
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NFA for {ai : i ≤ 999} AND More, but NOT a1000

i ≡ 0 (mod 2)
i ≡ 1 (mod 3)
Hence i ≡ 4 (mod 6).

i ≡ 0 (mod 5)
i ≡ 6 (mod 7)

Hence i ≡ 20 (mod 35).

i ≡ 10 (mod 11)

So we have
i ≡ 4 (mod 6)
i ≡ 20 (mod 35)
i ≡ 10 (mod 11).
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NFA for {ai : i ≤ 999} AND More, but NOT a1000?

From:
i ≡ 4 (mod 6)
i ≡ 20 (mod 35)
i ≡ 10 (mod 11).
One can show
i ≡ 1000 (mod 6× 35× 11)

So
i ≡ 1000 (mod 2310)
Hence i ≥ 1000.
Recap If ai is rejected then i ≥ 1000.
Hence If i ≤ 999 then ai is accepted.
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How Many States for {ai : i ≤ 999} AND More, but
NOT a1000?

2 + 3 + 5 + 7 + 11 = 28 states.
Plus the start state, so 29.



NFA for {ai : i 6= 1000}

1. We have an NFA on 42 states that accepts {ai : i ≥ 1001}
This includes the start state.

2. We have an NFA on 29 states that accepts {ai : i ≤ 999} and
other stuff, but NOT a1000. This includes the start state.

Take NFA of union using e-transitions for an NFA and do not
count start state twice, so have

42 + 29− 1 = 70 states.
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Interesting Problem, Profound Moral

1. In the Springs of 2015, 2016, 2017, 2018, 2019, 2020, and
2021, Gasarch has given this problem to the students in
CMSC 452.

2. Every year almost everyone thinks The NFA requires ∼ n
states.

3. Why is this? They did not know the trick.

4. Moral Lesson Lower bounds are hard! You have to rule out
that someone does not have a very clever trick that you just
had not thought of.
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This was NOT a lecture on Size of NFAs

You thought this was a lecture on sizes of NFAs.

It was not.

I This is a lecture on NP-completeness.

I Just because you cannot think of an algorithm for SAT in P
does not mean that there is not one.

I It is possible that someone will come up with a technique you
didn’t think of, or some use math you did not know.

I Is this just a vague possibility?
It just happened to you in a different context!
You thought {ai : i 6= 1000} required a ∼ 1000 state NFA.
But a technique and some math got it to 70 states.

I Upshot Lower bounds are hard to prove since they must rule
out techniques you have not thought of.

I Respect the difficulty of lower bounds!
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Can We Do Better than 70 States?

There is a 70-state NFA for {ai : i 6= 1000}.

Is there a smaller NFA?
Vote:

1. Bill knows an NFA with ≤ 69 states.

2. Bill can prove that any NFA for L has ≥ 70 states.

3. The answer is UNKNOWN TO BILL!

Bill knows an NFA with ≤ 69 states.
There is an NFA for L with 59 states.
See next slide.
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The 59-state NFA for L

Figure: 59 State NFA for L



Two Tricks Used To Get it to 59 States

1. To get {ai : i ≤ 999}, we used DFAs that picked out specific
values mod {2, 3, 5, 7, 11}.

The same proof works for any set of coprime numbers that
multiply to ≥ 1000.

Optimally, we would use {4, 5, 7, 9}, saving 3 states.

2. To get {ai : i ≥ 1001}, we calculated 32×33−32−33 = 991,
and then added 9 additional states before the loop.

However, we could have instead made the 9th state of the
loop accept, and have the shortcut go to the 9th state instead.

This would save us 8 states, because we still need a distinct
start state.
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loop accept, and have the shortcut go to the 9th state instead.

This would save us 8 states, because we still need a distinct
start state.



Two Tricks Used To Get it to 59 States

1. To get {ai : i ≤ 999}, we used DFAs that picked out specific
values mod {2, 3, 5, 7, 11}.
The same proof works for any set of coprime numbers that
multiply to ≥ 1000.

Optimally, we would use {4, 5, 7, 9}, saving 3 states.

2. To get {ai : i ≥ 1001}, we calculated 32×33−32−33 = 991,
and then added 9 additional states before the loop.

However, we could have instead made the 9th state of the
loop accept, and have the shortcut go to the 9th state instead.

This would save us 8 states, because we still need a distinct
start state.



Two Tricks Used To Get it to 59 States

1. To get {ai : i ≤ 999}, we used DFAs that picked out specific
values mod {2, 3, 5, 7, 11}.
The same proof works for any set of coprime numbers that
multiply to ≥ 1000.

Optimally, we would use {4, 5, 7, 9}, saving 3 states.

2. To get {ai : i ≥ 1001}, we calculated 32×33−32−33 = 991,
and then added 9 additional states before the loop.

However, we could have instead made the 9th state of the
loop accept, and have the shortcut go to the 9th state instead.

This would save us 8 states, because we still need a distinct
start state.



Can We Do Better than 59 States?

Vote:

1. No, 59 is optimal

2. Yes, but not by much

3. Yes, substantially!

4. Unknown to science!

Answer: Unknown to science.
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Math Needed for {ai : i 6= n}
Frobenius Thm (aka The Chicken McNugget Thm)

Thm If x , y are relatively prime then

I For all z ≥ xy − x − y + 1 there exists c , d ∈ N such that
z = cx + dy .

I There is no c , d ∈ N such that xy − x − y = cx + dy .

We use this to get an NFA for {ai : i ≥ n + 1} by using x , y ≈
√
n.

1) Find x , y rel prime such that xy − x − y ≤ n (try to make it
close to n).
2) Find t such that (xy − x − y + 1) + t = n + 1.
Use this x , y for the loop, and t for the tail.
Try to take x and y close to

√
n, so there is roughly

√
n states for

the loop and shortcut.
t will be ≤

√
n (usually much less).

So the total number of states for this part is ∼ 2
√
n.
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Math Needed for {ai : i 6= n} II

Thm Let n ∈ N. Let q1, . . . , qk be rel prime such that∏k
i=1 qi ≥ n. Then the set of all i such that

i 6≡ n (mod q1).
...
i 6≡ n (mod qk).
Contains {1, . . . , n − 1} and does not contain n

Number theory tells us that can find such a q1, . . . , qk with

k∑
i=1

qi ≤ (log n)2 log log n.

So can use this to get NFA for {ai : i ≤ n− 1} (and other stuff but
not an) with ≤ (log n)2 log log n states.
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From the Last Two Slides

No details, but from the last two slides you can get that
{ai : i 6= n} has an NFA of size ≤ 2

√
n + (log n)2 log log n.

Can be improved:

Thm The language {ai : i 6= n} has an NFA of size√
n + O

(
(log n)2/ log log n

)
.

The bound is fairly tight:

Thm Any NFA for {ai : i 6= n} requires at least
√
n states.

Paper by Gasarch-Metz-Xu-Shen-Zbarsky.
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General size for DFA vs. NFA for one letter alphabet

Thm If language over a one letter alphabet is accepted by an
NFA of size n, then it is accepted by a DFA of size

O
(
e
√
n ln n
)

.

The bound is tight:

Thm There exists a language over a one letter alphabet that
is accepted on an NFA of size n, but any DFA for the language

has size (at least) Ω
(
e
√
n ln n
)

)on a DFA.

Is this interesting and/or important?
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NP-Completeness

Another reason this lecture is about NP-Completeness

Determinism versus Nondeterminism.
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