1. (0 points) READ the syllabus- Content and Policy. What is your name? Write it clearly. What is the day and time of the first midterm? Read slides on Dr. Mazurek’s lecture.

2. (25 points) Write a simple program which does the following:
 (a) INPUT: A key K, a nonce N, and a text string M
 (b) OUTPUT: Ciphertext corresponding to M encrypted under AES256-GCM (i.e. the AES algorithm with key length 256 in GCM mode) with K as the key and N as the IV.

Do this two ways and WRITE IN ENGLISH the contrast of experience: Include your code, an input of your choice, and the corresponding output. You have TWO choices:
I) Do both in PYTHON:
 (a) Cryptography library on the hw website, and
 (b) PyCrypto on the hw website
II) Do both in C (which would be harder)
 (a) C via OpenSSL on the hw website, and
 (b) libsodium on the hw website

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!!!!
3. (20 points) Let $N = pq$ where p, q are primes. Let $m \in \{2, \ldots, N - 1\}$.

(a) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16} + 1}$ using repeated squaring.

(b) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16} - 1}$ using repeated squaring.

(c) (0 points, this is just here for information) If you did the last two problems right then $m^{2^{16} + 1}$ took MUCH LESS mults then $m^{2^{16} - 1}$. This is one reason why $e = 2^{16} + 1$ is so popular in RSA.

(d) (4 points) $2^{16} + 1$ is prime. Is $2^{32} + 1$ prime? If not then give its factors. (HINT- look up Fermat Primes on the web)

(e) (4 points) Why is choosing e to be prime a good thing to do?

(f) (4 points) I had said in class that we do not want to pick e too low. Roughly how big does N have to be before picking $e = 2^{16} + 1$ is a bad thing to do. How does this N compare to the number of protons in the universe? (Look up Eddington’s Number on the web)

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!!!!
4. (25 points) (HINT — look up the Chinese Remainder Theorem.) Give an algorithm (psuedocode but more descriptive) for the following:

Input: $N_1, \ldots, N_L, x_1, \ldots, x_L$ where N_1, \ldots, N_L are rel prime.

Output: An x such that

$x \equiv x_1 \pmod{N_1}$

$x \equiv x_2 \pmod{N_2}$

::

$x \equiv x_L \pmod{N_L}$

AND $0 \leq x < N_1 \cdots N_L$.

You can assume you have a program that finds inverses of numbers in mods if they exist.

Note that since all of the N_i are rel prime, for all i there exists a number which you can denote M_i^{-1} which is the inverse of $M_i \pmod{N_i}$, where $M_i = N_1 N_2 \ldots N_{i-1} N_{i+1} \ldots N_L$.

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!
5. (30 points) (Read the slides on low-exponent attacks on RSA.) Before getting to the specs of the psuedocode you are to write, here is the setting.

- Zelda will do RSA with L people A_1, \ldots, A_L.
- Zelda is using RSA as follows: For person A_i she uses (e, N_i).
- The N_i are all relatively prime.
- $N_1 < \cdots < N_L$.
- The parameter e – we think of it as being small but the algorithm should run even if e is not small. It may report back NO could not crack.
- We assume that Zelda sent the same message to everyone. The message is m. So she send A_i the number $m^e \mod N_i$.
- You are Eve. You already have a program that will do the Chinese Remainder Theorem. That is, you have a program that will, on input $x_1, \ldots, x_L, N_1, \ldots, N_L$ where the N_i’s are rel prime, output x such that, for all $1 \leq i \leq L$, $x \equiv x_i \pmod{N_i}$.

NOW YOUR ASSIGNMENT:
Write pseudocode for a program such that

(a) **Input:** $e, N_1 < \cdots < N_L$ and c_1, \ldots, c_L. The N_i are all rel prime. There is an m such that, for all $1 \leq i \leq L$, $c_i = m^e \pmod{N_i}$.

(b) **Output:** Either find m as in the example in class OR say that you can’t find m Prove that if $e \leq L$ then your algorithm does find m.