
Msg Auth Codes (MAC),
Hashing,

Digital Signatures

Authentication

Alice sends Bob a message m (likely encoded but not our concern)

Or does she?

Maybe it was send by Eve!

We need Bob to be able to Authenticate it came from Alice.

Note: In this lecture we do not care what m is. It could be a
ciphertext and perhaps should be called c . But we call it m. We
are only concerned with authentication.

Terminology: Security is not the right term. Non-forgeability is.
We still use the term Security Parameter.

Authentication

Alice sends Bob a message m (likely encoded but not our concern)

Or does she?

Maybe it was send by Eve!

We need Bob to be able to Authenticate it came from Alice.

Note: In this lecture we do not care what m is. It could be a
ciphertext and perhaps should be called c . But we call it m. We
are only concerned with authentication.

Terminology: Security is not the right term. Non-forgeability is.
We still use the term Security Parameter.

Authentication

Alice sends Bob a message m (likely encoded but not our concern)

Or does she?

Maybe it was send by Eve!

We need Bob to be able to Authenticate it came from Alice.

Note: In this lecture we do not care what m is. It could be a
ciphertext and perhaps should be called c . But we call it m. We
are only concerned with authentication.

Terminology: Security is not the right term. Non-forgeability is.
We still use the term Security Parameter.

Authentication

Alice sends Bob a message m (likely encoded but not our concern)

Or does she?

Maybe it was send by Eve!

We need Bob to be able to Authenticate it came from Alice.

Note: In this lecture we do not care what m is. It could be a
ciphertext and perhaps should be called c . But we call it m. We
are only concerned with authentication.

Terminology: Security is not the right term. Non-forgeability is.
We still use the term Security Parameter.

Authentication

Alice sends Bob a message m (likely encoded but not our concern)

Or does she?

Maybe it was send by Eve!

We need Bob to be able to Authenticate it came from Alice.

Note: In this lecture we do not care what m is. It could be a
ciphertext and perhaps should be called c . But we call it m. We
are only concerned with authentication.

Terminology: Security is not the right term. Non-forgeability is.
We still use the term Security Parameter.

Authentication

Alice sends Bob a message m (likely encoded but not our concern)

Or does she?

Maybe it was send by Eve!

We need Bob to be able to Authenticate it came from Alice.

Note: In this lecture we do not care what m is. It could be a
ciphertext and perhaps should be called c . But we call it m. We
are only concerned with authentication.

Terminology: Security is not the right term. Non-forgeability is.
We still use the term Security Parameter.

Formal Def of MAC

Def: A MAC is Π = (GEN,MAC ,V) where:

1. GEN(1n) is a uniform k ∈ {0, 1}n.

2. Given key k and msg m, MACk(m) = t, a tag. MACk is PPT.

3. Vk(m, t) = 1 if MACk(m) = t, 0 otherwise.

How to Use: Alice and Bob have Π = (GEN,MAC ,V)

1. Alice generates k via GEN and sends it to Bob privately.

2. For Alice to send m ∈ {0, 1}∗ to Alice computes
t = MACk(m) and sends (m, t).

3. Bob authenticates that its from Alice via by: Vk(m, t) = 1.

Note: We often restrict to m ∈ {0, 1}p(n), p poly.

Example of a Message Authentication Code (MAC)

1. k ∈ {0, . . . , p − 1} unif.

2. MACk(m) = m + k.

3. Vk(m, t) = 1 if t = m + k

Not Secure: If Eve has access to MACk or has old messages she
knows k = 7.
Eve can Forge: If Eve has key k then she can forge.

Example of a Message Authentication Code (MAC)

1. k ∈ {0, 1}n unif.

2. MACk(m) = m ⊕ k.

3. Vk(m, t) = 1 if t = m ⊕ k

Not Secure: If Eve has access to MACk or has old messages she
knows k .
Eve can Forge: If Eve has key k then she can forge.

Need: A function f such that knowing f on a few values does not
reveal what f is.

We have them! Psuedo-Random Functions!

Example of a Message Authentication Code (MAC)

1. k ∈ {0, 1}n unif.

2. MACk(m) = m ⊕ k.

3. Vk(m, t) = 1 if t = m ⊕ k

Not Secure: If Eve has access to MACk or has old messages she
knows k .
Eve can Forge: If Eve has key k then she can forge.

Need: A function f such that knowing f on a few values does not
reveal what f is.
We have them! Psuedo-Random Functions!

Construction of a Fixed Length MAC

Message are of length n
Let F be a PRF from {0, 1}n to {0, 1}n.
MAC:

1. GEN: choose a uniform key k ∈ {0, 1}n for F

2. MACk(m): output Fk(m)

3. Vk(m, t): output 1 iff Fk(m) = t

Theorem: Π is a non-forgeable MAC
Proof Sketch: If forgeable then Fk would not be psuedorandom.
Issue: We have not defined forgeable formally and we won’t.

Drawbacks?

I This only works for fixed-length messages

I Since need tag t to be short, this only works for short
messages

To get variable length we need a new Hardness Assumption.

Collision Resistant Hash Functions (CRHF)

Informal Def: A function H from {0, 1}n to X where X is finite is
Collision Resistant if it is HARD to find x , y such that
H(x) = H(y).

Common Hardness Assumption: There exists Collision Resistant
Hash Functions.
Often keyed: Hk where k is a key. k of length n gives H on {0, 1}n.

Random Oracle Model (ROM)

Def: The Random Oracle Model is the Hardness Assumption that
there exists a H such that both:

I H is a Collision Resistant Hash Functions.

I H is a Psuedorandom function.

Often keyed: Hk where k is a key.

Random Oracle Model: Warning

Compare the following Hardness Assumptions:

I Factoring is hard. Well tested. Fermat (1600’s) worked on it!
Easy to increase security parameter.

I RSA assumption. Worked on since 1978. But 40 years of
modern math is a lot. Easy to increase security parameter.

I ROM. Hmmm. No candidate for the RO has been that well
tested. The assumption H is random harder to test then
Factoring is hard. Not clear how much increasing the security
parameter will help.

But! There are real functions (in two slides) that are really being
used that seem to satisfy ROM.

Possible Collision Resistant Hash Function

Security Parameter n
Hk(x , y): k encodes (p, q, g , h) where

I p, q is an n-bit primes (who would have guessed! :-))

I g has a larger period mod N = pq (omit how we can find
such a g).

I h is some other random element of ZN .

H : ZN × ZN → ZN is defined by

H(k, y) = gkhy (mod N)

Note: This is fixed length, but can use bigger and bigger security
parameters so considered to be a function on {0, 1}n.

More Collision Resistant Hash Functions

The following are really used! The definitions are ugly (like
Trivium).

Hash Sch Year Const Numb bits Year Broken

MD4 1990 128 1995
MD5 1992 128 1998
SHA1 1994 160 2005*
SHA-256 2005 256 Not Yet!

*SHA1 – collision found, but not quite broken.

Construction of a ≥ n-length MAC

Message are of length ≥ n
Let Fk be a PRF from {0, 1}n to {0, 1}n.
Let Hk be a CRHF from {0, 1}∗ to {0, 1}n.
Both keys are in {0, 1}n.
MAC:

1. GEN: choose a uniform key k ∈ {0, 1}n for F and H

2. MACk(m): output Fk(Hk(m))

3. Vk(m, t): output 1 iff Fk(Hk(m)) = t

Theorem: Π is a non-forgeable MAC
Proof Sketch: If forgeable then Fk would not be psuedorandom OR
Hk would not be CRHF.
Issue: We have not defined forgeable formally and we won’t.

Drawbacks?

Alice: Bob, you signed a document saying you owe me $100,000

Bob: I didn’t! And even if I did you can’t prove it!

(Why do criminals on TV shows always say You can’t prove I’m
guilty? They should just lie and say I didn’t do it.)

Need for the signature to be public!

Digital Signatures

Digital signatures

1. MAC uses private Key

2. MAC is good if Alice and Bob’s only enemy is Eve.

3. MAC is bad if Bob says I didn’t send that

Need a public key version of MAC that witnesses can verify.

Compare MAC’s to Dig. Sig

I Public verifiability

I Dig Sig: Anyone can verify a signature

I MAC: Only a holder of the key can verify a MAC tag.

I Transferable

I Dig Sig: Can forward a signature to someone else . . .

I Dig Sig: Non-repudiation Bob can’t deny he signed!

Signature schemes

I A signature scheme is defined by three PPT algorithms (GEN,
SIGN, V):

I GEN: takes as input 1n, outputs sk , pk ∈ {0, 1}n (Secret Key,
Public Key).

I SIGN: takes as input a private key sk and a message
m ∈ {0, 1}∗; outputs a signature σ

σ ← SIGNsk(m)

I V: takes a public key pk, message m, and signature σ as input;
outputs 1 or 0

∀m, pk , sk[Vpk(m,SIGNsk(m)) = 1]

First Attempt at a Signature Scheme

1. Alice GEN generates primes p, q of length n. p, q is private,
N = pq is public. Let R = (p − 1)(q − 1). e, d such that
ed ≡ 1 (mod R). (N, e) public, (p, q, d) private. Alice has d ,
nobody else does.

2. For Alice to sign message m, Alice sends σ = md (mod N).

3. For Bob to verify Alice computes σe

σd ≡ (md)e ≡ mde ≡ mde (mod R) ≡ m (mod N).

Looks Secure But Its Not

There are attacks on it that work.

Omitted.

But what to do?

Just a small adjustment.

Second Attempt at a Signature Scheme

Assume the Random Oracle Model. Assume Let H be a Random
Oracle. It is public.

1. Alice GEN generates primes p, q of length n. p, q is private,
N = pq is public. Let R = (p − 1)(q − 1). e, d such that
ed ≡ 1 (mod R). e public, d private. Alice has d , nobody
else does.

2. For Alice to sign message m, Alice sends σ = H(m)d

(mod N).

3. To verify Bob computes σe :

σe ≡ (H(m)d)e ≡ H(m)de ≡ H(m)de (mod R) ≡ H(m) (mod N).

Secure?

Theorem: If a message can be forged then H is not a Random
Oracle.
Secure!

Second Attempt at a Signature Scheme

Assume the Random Oracle Model. Assume Let H be a Random
Oracle. It is public.

1. Alice GEN generates primes p, q of length n. p, q is private,
N = pq is public. Let R = (p − 1)(q − 1). e, d such that
ed ≡ 1 (mod R). e public, d private. Alice has d , nobody
else does.

2. For Alice to sign message m, Alice sends σ = H(m)d

(mod N).

3. To verify Bob computes σe :

σe ≡ (H(m)d)e ≡ H(m)de ≡ H(m)de (mod R) ≡ H(m) (mod N).

Secure?
Theorem: If a message can be forged then H is not a Random
Oracle.

Secure!

Second Attempt at a Signature Scheme

Assume the Random Oracle Model. Assume Let H be a Random
Oracle. It is public.

1. Alice GEN generates primes p, q of length n. p, q is private,
N = pq is public. Let R = (p − 1)(q − 1). e, d such that
ed ≡ 1 (mod R). e public, d private. Alice has d , nobody
else does.

2. For Alice to sign message m, Alice sends σ = H(m)d

(mod N).

3. To verify Bob computes σe :

σe ≡ (H(m)d)e ≡ H(m)de ≡ H(m)de (mod R) ≡ H(m) (mod N).

Secure?
Theorem: If a message can be forged then H is not a Random
Oracle.
Secure!

