
Cryptography

Lecture 08

Pseudorandom Functions
and Permutations

Keyed functions

I Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient,
deterministic algorithm

I Define Fk(x) = F (k , x)

I The first input is called the key

I Choosing a uniform k ∈ {0, 1}n is equivalent to choosing the
function Fk : {0, 1}n → {0, 1}n

I i.e. for fixed key length n, the algorithm F defines a
distribution over functions in Funcn!

Note: A Keyed Perm requires Fk a perm and F−1k easy to compute.

Pseudorandom Functions (PRFs)

We define Pseudorandom Function informally.

A Pseudorandom Function is a keyed function
F : {0, 1}n × {0, 1}n → {0, 1}n such that a PPT Eve cannot do
well in the following game:

1. Alice picks k ∈ {0, 1}n and hence picks Fk

2. Bob picks a function f uniformly at random from funcn.

3. Eve gets a black box for one of {Fk , f }.
4. Eve needs to determine which one.

Pseudorandom Permutations (PRPs)

We define Pseudorandom Permutation informally.

A Pseudorandom Permutation is a keyed function
F : {0, 1}n × {0, 1}n → {0, 1}n such that every Fk is a
permutation and a PPT Eve cannot do well in the following game:

1. Alice picks k ∈ {0, 1}n and hence picks Fk

2. Bob picks a permutation f uniformly from permn.

3. Eve gets a black box for one of {Fk , f }.
4. Eve needs to determine which one.

Note:

I For large enough n, a random permutation is indistinguishable
from a random function

I So in Psuedorandom Function game Bob could pick a random
permutation.

PRFunctions Yields PRGenerators

I PRF F immediately implies a PRG G :

I Define G (k) = Fk(0 · · · 0) | Fk(0 · · · 1) | · · ·Fk(1 · · · 1)

I PRF can be viewed as a PRG with random access to
exponentially long output

I The function Fk can be viewed as the n2n-bit string
Fk(0 . . . 0) | · · · | FK (1 . . . 1)

Do PRFs/PRPs exist? Theoretical Answer

A one-way function (perm) is function (perm): easy to compute,
hard to invert.
A one-way function (perm) with a hard core predicate is a function
(perm) that is easy to compute but hard to invert, and (say) the
middle bit of f −1(x) is hard to compute.

Chapter 7 shows:
∃ One way Perm =⇒ ∃ one way perm with a hcp.
∃ one way perm with hcp =⇒ ∃ PRG with expanion 1
∃ PRG with expa-1 =⇒ ∃ PRG with expa-p(n) any poly p.
∃ PRG with expa-2n =⇒ ∃ PRF.
Note: One way func =⇒ PRF also known but much harder.

Comment on Theoretical Answer

Could start with a function that we thing is a One Way Perm.
Can you think of one? Discuss

If p is a prime and g is a generator than f (x) = g x (mod p):

1. f is a perm.

2. If we think Discrete Log is hard then f is not invertible.

DL hard =⇒ f is one-way-perm =⇒ · · · =⇒ PRF.
Should we construct one this way?Discuss
No: Too slow. But good for proof of concept.

Comment on Theoretical Answer

Could start with a function that we thing is a One Way Perm.
Can you think of one? Discuss

If p is a prime and g is a generator than f (x) = g x (mod p):

1. f is a perm.

2. If we think Discrete Log is hard then f is not invertible.

DL hard =⇒ f is one-way-perm =⇒ · · · =⇒ PRF.
Should we construct one this way?Discuss
No: Too slow. But good for proof of concept.

Comment on Theoretical Answer

Could start with a function that we thing is a One Way Perm.
Can you think of one? Discuss

If p is a prime and g is a generator than f (x) = g x (mod p):

1. f is a perm.

2. If we think Discrete Log is hard then f is not invertible.

DL hard =⇒ f is one-way-perm =⇒ · · · =⇒ PRF.
Should we construct one this way?Discuss

No: Too slow. But good for proof of concept.

Comment on Theoretical Answer

Could start with a function that we thing is a One Way Perm.
Can you think of one? Discuss

If p is a prime and g is a generator than f (x) = g x (mod p):

1. f is a perm.

2. If we think Discrete Log is hard then f is not invertible.

DL hard =⇒ f is one-way-perm =⇒ · · · =⇒ PRF.
Should we construct one this way?Discuss
No: Too slow. But good for proof of concept.

Do PRFs/PRPs exist? Practical

I Block ciphers are practical constructions of pseudorandom
permutations

I No asymptotics: F : {0, 1}n × {0, 1}m → {0, 1}m

I n = “key length”

I m = “block length”

I Hard to distinguish Fk from uniform f ∈ Permm even for
attackers running in time ≈ 2n

AES

I Advanced encryption standard (AES)

I Standardized by NIST in 2000 based on a public, worldwide
competition lasting over 3 years

I Block length = 128 bits

I Key length = 128, 192, or 256 bits

I Will discuss details later in the course

I Currently no reason to use anything else

Recall Comp CPA-security via a Game.

Π is an encryption system. n is a security param.

1. k ← Gen(1n). Eve does NOT know k.

2. Eve picks m0,m1 ∈M (|m0| = |m1|). Eve has BB for Enck .

3. b ← {0, 1}, c ← Enck(mb)

4. Π sends c to Eve.

5. Eve outputs b‘ ∈ {0, 1}. Eve has BB for Enck .

6. If b = b′ then Eve Wins!

Π Comp CPA-secure if for all PPT Eve

Pr[Eve Wins] ≤ 1

2
+ ε(n)

CPA-secure encryption

I Let F be a keyed function

I Gen(1n): choose a uniform key k ∈ {0, 1}n

I Enck(m)

I Choose uniform r ∈ {0, 1}n (IV, Public)

I Output ciphertext < r ,Fk(r)⊕m >

I Deck(c1, c2): output c2 ⊕ Fk(c1)

I Correctness is immediate

Real-world security?

I What happens if an r is ever reused?

I What is the probability that the r used in some challenge
ciphertext is also used for some other ciphertext?

I What happens to the bound if the r is chosen non-uniformly?

Do Not Do Any Of These Things!

Real-world security?

I What happens if an r is ever reused?

I What is the probability that the r used in some challenge
ciphertext is also used for some other ciphertext?

I What happens to the bound if the r is chosen non-uniformly?

Do Not Do Any Of These Things!

PROS and CONS?

PROS and CONS. Discuss

PRO If F is a pseudorandom function, then this scheme is
CPA-secure

Intuition: If the scheme was not CPA-secure can use to predict F
and hence F is not psuedorandom.

PRO Can use same key k for t messages, any t.

CON Only defined for encryption of n-bit messages

CON Enck(m) =< r ,Fk(r)⊕m >: n bit message requires 2n bits.

CAVEAT Can send long message break up into n-bit chunks.

CON To send t n-bits messages requires 2tn bits.

PROS and CONS?

PROS and CONS. Discuss
PRO If F is a pseudorandom function, then this scheme is
CPA-secure

Intuition: If the scheme was not CPA-secure can use to predict F
and hence F is not psuedorandom.

PRO Can use same key k for t messages, any t.

CON Only defined for encryption of n-bit messages

CON Enck(m) =< r ,Fk(r)⊕m >: n bit message requires 2n bits.

CAVEAT Can send long message break up into n-bit chunks.

CON To send t n-bits messages requires 2tn bits.

PROS and CONS?

PROS and CONS. Discuss
PRO If F is a pseudorandom function, then this scheme is
CPA-secure

Intuition: If the scheme was not CPA-secure can use to predict F
and hence F is not psuedorandom.

PRO Can use same key k for t messages, any t.

CON Only defined for encryption of n-bit messages

CON Enck(m) =< r ,Fk(r)⊕m >: n bit message requires 2n bits.

CAVEAT Can send long message break up into n-bit chunks.

CON To send t n-bits messages requires 2tn bits.

Sending Many Messages

Goal

The method:
Enck(m) =< r ,Fk(r)⊕m >

is secure but to send ONE n-bit message takes 2n bits.

Could send t n-bit messages with 2tn bits.

Goal: Send t n-bit message with < (1 + ε)tn bits

securely!

Goal

The method:
Enck(m) =< r ,Fk(r)⊕m >

is secure but to send ONE n-bit message takes 2n bits.

Could send t n-bit messages with 2tn bits.

Goal: Send t n-bit message with < (1 + ε)tn bits

securely!

Electronic Code Book (ECB) mode

1. Enck(m1, . . . ,mt) //note t is arbitrary

I Send (Fk(m1), . . . ,Fk(mt))

2. Decryption? Discuss

I Decryption requires Fk to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks This is idiotic! Deterministic!

Not CPA secure. Not EAV-secure. So why used?

Electronic Code Book (ECB) mode

1. Enck(m1, . . . ,mt) //note t is arbitrary

I Send (Fk(m1), . . . ,Fk(mt))

2. Decryption? Discuss

I Decryption requires Fk to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks This is idiotic! Deterministic!

Not CPA secure. Not EAV-secure. So why used?

Electronic Code Book (ECB) mode

1. Enck(m1, . . . ,mt) //note t is arbitrary

I Send (Fk(m1), . . . ,Fk(mt))

2. Decryption? Discuss

I Decryption requires Fk to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks This is idiotic! Deterministic!

Not CPA secure. Not EAV-secure. So why used?

Electronic Code Book (ECB) mode

1. Enck(m1, . . . ,mt) //note t is arbitrary

I Send (Fk(m1), . . . ,Fk(mt))

2. Decryption? Discuss

I Decryption requires Fk to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks

This is idiotic! Deterministic!

Not CPA secure. Not EAV-secure. So why used?

Electronic Code Book (ECB) mode

1. Enck(m1, . . . ,mt) //note t is arbitrary

I Send (Fk(m1), . . . ,Fk(mt))

2. Decryption? Discuss

I Decryption requires Fk to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks This is idiotic! Deterministic!

Not CPA secure. Not EAV-secure. So why used?

Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized

(2) Used today because people are stupid

(3) Half of the apps in the Android App Store use this.

(I have an iphone)

Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized

(2) Used today because people are stupid

(3) Half of the apps in the Android App Store use this.

(I have an iphone)

Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized

(2) Used today because people are stupid

(3) Half of the apps in the Android App Store use this.

(I have an iphone)

Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized

(2) Used today because people are stupid

(3) Half of the apps in the Android App Store use this.

(I have an iphone)

Not just a theoretical problem!

Want that when we transmit a picture secretly, Eve learns nothing,
sees a blank screen or all black or something like that.

If we transmit a picture using ECB here is what Eve sees:

Not just a theoretical problem!

Want that when we transmit a picture secretly, Eve learns nothing,
sees a blank screen or all black or something like that.

If we transmit a picture using ECB here is what Eve sees:

Not just a theoretical problem!

Want that when we transmit a picture secretly, Eve learns nothing,
sees a blank screen or all black or something like that.

If we transmit a picture using ECB here is what Eve sees:

Counter (CTR) Mode

I Enck(m1, . . . ,mt) // note: t is arbitrary

I Choose c0 ← {0, 1}n

I For i = 1 to t: ci = mi ⊕ Fk(c0 + i (mod 2n))

I Output c0, c1, . . . , ct

I Decryption? Discuss

I Send t strings by sending one and add to it t times.

I To send t n-bit messages, send t + 1 n-bit messages.

CTR mode

CTR mode

Theorem: if F is a pseudorandom function, then CTR mode is
CPA-secure

Intuition: If CTR is not CPA-secure then can use that to show that
to predict F , so F is not pseudorandom.

Cipher Block Chaining (CBC) Mode

I Enck(m1, . . . ,mt) //note t is arbitrary

I Choose random c0 ← {0, 1}n (also called the IV)

I For i = 1 to t: ci = Fk(mi ⊕ ci−1)

I Output c0, c1, . . . , ct

I Decryption? Discuss

I Decryption requires F to be invertible

I Send t strings by sending one and ⊕.

I To send t n-bit messages, send t + 1 n-bit messages.

Cipher Block Chaining (CBC) Mode

I Enck(m1, . . . ,mt) //note t is arbitrary

I Choose random c0 ← {0, 1}n (also called the IV)

I For i = 1 to t: ci = Fk(mi ⊕ ci−1)

I Output c0, c1, . . . , ct

I Decryption? Discuss

I Decryption requires F to be invertible

I Send t strings by sending one and ⊕.

I To send t n-bit messages, send t + 1 n-bit messages.

CBC mode

CBC mode

Theorem: If F is a pseudorandom permutation, the CBC mode is
CPA-secure
Intuition: If CBC is not CPA-secure then can use that to show that
to predict F , so F is not pseudorandom.

