Chosen Plaintext Attacks
(CPA)

Goals

New Attacks! Chosen Plaintext Attacks (often CPA) is when Eve
can choose to see some messages encoded. Formally she has Black

Box for ENC.
We will:
1. Define Chosen Plaintext Attack for perfect security.
2. Define Chosen Plaintext Attack for computational security.

Perfect CPA-Security via a Game

M = (GEN, ENC, DEC) be an enc sch, message space M.
Game: Alice and Eve are the players. Alice has full access to I1.
Eve has access to ENC.

1. Alice k + K. Eve does NOT know k.
. Eve picks mg, m; € M Eve has black box for ENCj.

2
3. Alice picks m € {mg, m1}, ¢ < ENCy(m)
4. Alice sends c to Eve.

5

. Eve outputs mg or my, hoping that her output is DECy(c).
6. Eve wins if she is right.

Note: ENCj is randomized, so Eve can't just compute ENCy(mo)
and ENCy(my) and see which one is c.
Does Eve has a strategy that wins over half the time?

Perfect CPA-Security

» [is secure against chosen-plaintext attacks (CPA-secure) if
for all Eve.

1
Pr[Eve Wins] < 5

Eve always wins if ENC, is Deterministic

1. Eve piCkS mg, mjy. Finds C = ENCk(mo), c = ENCk(ml).
2. Alice sends Eve ¢ = ENCi(mp). Eve has to determine b.
3. If ¢ = ¢g then Eve sets b’ =0, if c = ¢; then Eve sets b’ = 1.

Upshot: ALL deterministic schemes are CPA-insecure.

Comp CPA-Security

M = (GEN, ENC, DEC) be an enc sch, message space M.

n is a security parameter.

Game: Alice and Eve are the players. Alice has full access to I1.
Eve has access to ENCy.

1. Alice k <~ KN {0,1}". Eve does NOT know k.
. Eve picks mg, my € M, |mg| = |mq|

2
3. Alice picks m € {mg, m1}, ¢ <= ENCy(m)
4. Alice sends c to Eve.

5

. Eve outputs mg or my, hoping that her output is DECy(c).
6. Eve wins if she is right.

Does Eve has a strategy that wins over half the time?

Comp. CPA-Security

» [1is CPA-Secure if for all Polynomial Prob Time Eves, there is
a neg function €(n) such that

1
Pr[Eve Wins| < 3 + €(n)

Randomized Encryption

1. Any Deterministic Encryption will NOT be CPA-secure.
2. Hence we have to use Randomized Encryption.

3. The issue is not an artifact of our definition: Even being able
to tell if two messages are the same is a leak.

4. Next three slides defines Det Encryption, Keyed Functions,
Rand Encryption.

Deterministic Encryption (for contrast)

n is a security parameter. A Deterministic Private-Key Encryption
Scheme has message space M, Key space K = {0,1}", and
algorithms (GEN, ENC, DEC):

1. GEN generates keys k € K.
2. ENCy encrypts messages, DEC) decrypts messages.
3. (Vk S IC)(Vm € ./\/l), DECk(ENCk(m)) =m

Keyed functions

1. Let F:{0,1}" x {0,1}" — {0,1}" be an efficient,
deterministic algorithm

2. Define Fi(x) = F(k,x)
3. The first input is called the key

4. Choosing a uniform k € {0,1}" is equivalent to choosing the
function Fj : {0,1}" — {0,1}"

Note: In literature and the textbook Keyed functions k, x can be
diff sizes, but we never do.

Keyed functions

1. Let F:{0,1}" x {0,1}" — {0,1}" be an efficient,
deterministic algorithm

2. Define Fi(x) = F(k,x)
3. The first input is called the key

4. Choosing a uniform k € {0,1}" is equivalent to choosing the
function Fj : {0,1}" — {0,1}"

Note: In literature and the textbook Keyed functions k, x can be
diff sizes, but we never do. They are wrong, we are right.

Randomized Encryption

A Randomized Private-Key Encryption Scheme has message space
M, Key space K = {0,1}", algorithms (GEN,ENC,DEC).

1.
2.

GEN generates keys k € K (Think: picking an Fy rand.)

ENCg: on input m it picks a rand r € {0,1}" and outputs
(r,ma® Fi(r)).

3. DECk(I‘7 C) =c®d Fk(r).
Note:

1.

ENCy(m) is not a function- it can return many different pairs.

2. Easy to see that Encrypt-Decrypt works.
3.
4. General definition that encompasses Rand Shift: Can replace

Rand Shift is not an example, but is the same spirit.

@ with any invertible operation.

Pseudorandom functions

Pseudorandom functions

> Informally, a pseudorandom function “looks like” a random
(i.e. uniform) function

» Can define formally via a Game. We won't. Might be HW or
Exam Question.

» From now on PRF means Pseudorandom function.

» Will actually get Psuedorandom Permutations for real world
use.

Constructing a CPA-Secure Encryption

Theorem: If Fy is a PRF then the following encryption scheme is
CPA-secure.
1. GEN generates keys k € KC (Think: picking an Fy rand.)

2. ENCy: on input m it picks a rand r € {0,1}" and outputs
(r,m@® Fi(r)).
3. DECk(r, C) =c®d Fk(r).

Proof Sketch: If not CPA-secure then Fj is not a PRF.

A Real World (probably) PRF:
Substitution-Permutation Networks (SPNs)

Recall. ..

» Want keyed permutation
F:{0,1}" x {0,1}* = {0,1}*
n = key length, £ = block length

» Want Fy (for uniform, unknown key k) to be indistinguishable
from a uniform permutation over {0, 1}

Substitution-Permutation Networks (SPNs)

KEY

PLAINTEXT

KO
I N
s] L] (s
JT_ JIL TJ1] T[TJ
B
I O A A

1
I N
EERENREAREY
1 A
B
I

K2
I N
EURENREAREY
I O A

3

CIPHERTEXT

Substitution-Permutation Networks (SPNs)

For r-rounds:
Key will be k = k; --- k, and k;'s will be used along with public

S-box to create perms.
> fi.(x) = Si(ki ® x), where §; is a public permutation

» S; are called “S-boxes” (substitution boxes)
» XORing the key is called "key mixing”

> Note that SPN is invertible (given the key)

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.
Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.
Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers
Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to
you find?

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.
Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers
Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to
you find?

20,000. Given repeats and conference-Journal repeats, there are
approx 10,000 papers on S-boxes.

Substitution-Permutation Networks (SPNs)

1) There are attacks on 1-round and 2-round SPN's

2) Can extend attacks to r rounds but time complexity goes up.
3) These attacks are better than naive but still too slow.

4) SPN considered secure if r is large enough.

5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9
rounds (and other things) and is thought to be secure.

Substitution-Permutation Networks (SPNs)

1) There are attacks on 1-round and 2-round SPN's

2) Can extend attacks to r rounds but time complexity goes up.
3) These attacks are better than naive but still too slow.

4) SPN considered secure if r is large enough.

5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9
rounds (and other things) and is thought to be secure. For now.

7) Takeway: AES is a real world SPN that is really used and is
believed to be a PRF.

Feistel networks

In SPN Network S-boxes Invertible

KEY

PLAINTEXT

KO
I N
s] L] (s
JT_ JIL TJ1] T[TJ
B
I O A A

1
I N
EERENREAREY
1 A
B
I

K2
I N
EURENREAREY
I O A

KS

CIPHERTEXT

SPN: PROS and CONS

PRO: With enough rounds secure.
CON: Hard to come up with invertible S-boxes.

Feistel Networks will not need invertible components but will be
secure.

Feistel networks

1) Message length is ¢. Just like SPN.
2) Key k = ki - - - k, of length n. r rounds. Just like SPN.
3) |ki| = n/r. Need NOT be ¢. Unlike SPN.
4) Use key k; in ith round. Just like SPN.
)

5) Instead of S-boxes we have public functigns %. Need not be
invertible! Unlike SPN. We derive f;(R) = fi(ki, R) from them.

For 1-round:

Input: LgRy, |L0| = |R0| = 5/2

Output: L1Ry where L1 = Ry, Ry = Lo @ f1(Ro)
Invertible! The nature of fi(R) does not matter.

1) Input(L1Ry)

2) Ro = L.

3) Can compute f1(Ry) and hence Lo = Ry @ f1(Ro).

Feistel Network

Encryption Decryption
Plaintext Ciphertext
I LO | RO | Rn+‘| | I-n+1 |

Y

S

Y

g

A 4 A4
[Rast | Lnet |

A "
[Lo | Ro |

Ciphertext

Plaintext

r-round Feistel networks

1) Message length is ¢. Just like SPN.

2) Key k = ky - - - k, of length n. r rounds. Just like SPN.

3) |ki| = n/r. Need NOT be ¢. Unlike SPN.
)
5)
fi(R

4) Use key k; in ith round. Just like SPN.

Public functions %. Need not be invertible! Unlike SPN.
:(R) = fi(ki, R) from

Input: LgRy, |L0| = |R0| = 5/2

Output or Round 1: L1 Ry where L1 = Ry, R1 = Lo ® fi(Ro)
Output or Round 2: LyR, where Ly = Ry, Ry = L1 @ H(Ry)

Output or Round r: L, R, where L, = R,_1, R, =L,—1 ® f,(Rr-1)

Data Encryption Standard (DES)

» Standardized in 1977
> 56-bit keys, 64-bit block length

» 16-round Feistel network

» Same round function in all rounds (but different sub-keys)

» Basically an SPN design! But easier to build.

DES mangler function is f

[asbiesubher)

./’ ™
(|
[48-hit intermediate]
| T

[s, S, 33|s4’sslsﬁ|s7‘33]

}\\H///

32-bit intermediate]
[32-bit owput]

o = = = = 9ace

Security of DES

PRO: DES is extremely well-designed

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

Security of DES

PRO: DES is extremely well-designed
PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too smalll Brute-force search is feasible

56-bit key length

» A concern as soon as DES was released.
» Released in 1975, but that was then, this is now.

» Brute-force search over 2% keys is possible

» 1997: 1000s of computers, 96 days

» 1998: distributed.net, 41 days

» 1999: Deep Crack ($250,000), 56 hours
» 2018: 48 FPGAs, 1 day

» 2019: Will do as Classroom demo when teach this course in
Fall of 2019.

Increasing key length?

» DES has a key that is too short

» How to fix?

» Design new cipher. HARD!

» Tweak DES so that it takes a larger key. Since this is
Hardware not Software this is HARD!

» Build a new cipher using DES as a black box. EASY?

Double encryption

» Let F:{0,1}" x {0,1}* — {0,1}*
> (i.e. n=56, /=64 for DES)

» Define F?: {0,1}2" x {0,1}* — {0,1}* as follows:
Flako(x) = Fia (Fig(x))

(still invertible)

» If best known attack on F takes time 27, is it reasonable to
assume that the best known attack on F? takes time 22"?
Vote! YES, NO, UNKNOWN TO SCIENCE

Double encryption

» Let F:{0,1}" x {0,1}* — {0,1}*
> (i.e. n=56, /=64 for DES)

» Define F?: {0,1}2" x {0,1}* — {0,1}* as follows:
Flako(x) = Fia (Fig(x))

(still invertible)

» If best known attack on F takes time 27, is it reasonable to
assume that the best known attack on F? takes time 2277
Vote! YES, NO, UNKNOWN TO SCIENCE
NO The Meet-in-the-Middle attack takes 2" time. We omit
details.

Triple encryption

» Define F3:{0,1}3" x {0,1}* — {0,1}* as follows:

FR o ks (X) = Fieg (Fip(Fis (X))

» Can do meet-in-the-middle but would be 22"

» No better attack known.

Two-key triple encryption

Define F3: {0,1}?" x {0,1}* — {0, 1} as follows:

v

Fi ko (x) = Fio (Fip (Fio (x)))

Best attacks take time 22" — optimal given the key length!

v

v

Sames on key length.

v

Good for some backward-compatibility issues

