
Chosen Plaintext Attacks
(CPA)

Goals

New Attacks! Chosen Plaintext Attacks (often CPA) is when Eve
can choose to see some messages encoded. Formally she has Black
Box for ENCk .
We will:

1. Define Chosen Plaintext Attack for perfect security.

2. Define Chosen Plaintext Attack for computational security.

Perfect CPA-Security via a Game

Π = (GEN, ENC, DEC) be an enc sch, message space M.
Game: Alice and Eve are the players. Alice has full access to Π.
Eve has access to ENCk .

1. Alice k ← K. Eve does NOT know k .

2. Eve picks m0,m1 ∈M Eve has black box for ENCk .

3. Alice picks m ∈ {m0,m1}, c ← ENCk(m)

4. Alice sends c to Eve.

5. Eve outputs m0 or m1, hoping that her output is DECk(c).

6. Eve wins if she is right.

Note: ENCk is randomized, so Eve can’t just compute ENCk(m0)
and ENCk(m1) and see which one is c.
Does Eve has a strategy that wins over half the time?

Perfect CPA-Security

I Π is secure against chosen-plaintext attacks (CPA-secure) if
for all Eve.

Pr [Eve Wins] ≤ 1

2

Eve always wins if ENCk is Deterministic

1. Eve picks m0,m1. Finds c0 = ENCk(m0), c1 = ENCk(m1).

2. Alice sends Eve c = ENCk(mb). Eve has to determine b.

3. If c = c0 then Eve sets b′ = 0, if c = c1 then Eve sets b′ = 1.

Upshot: ALL deterministic schemes are CPA-insecure.

Comp CPA-Security

Π = (GEN, ENC, DEC) be an enc sch, message space M.
n is a security parameter.
Game: Alice and Eve are the players. Alice has full access to Π.
Eve has access to ENCk .

1. Alice k ← K ∩ {0, 1}n. Eve does NOT know k .

2. Eve picks m0,m1 ∈M, |m0| = |m1|

3. Alice picks m ∈ {m0,m1}, c ← ENCk(m)

4. Alice sends c to Eve.

5. Eve outputs m0 or m1, hoping that her output is DECk(c).

6. Eve wins if she is right.

Does Eve has a strategy that wins over half the time?

Comp. CPA-Security

I Π is CPA-Secure if for all Polynomial Prob Time Eves, there is
a neg function ε(n) such that

Pr[Eve Wins] ≤ 1

2
+ ε(n)

Randomized Encryption

1. Any Deterministic Encryption will NOT be CPA-secure.

2. Hence we have to use Randomized Encryption.

3. The issue is not an artifact of our definition: Even being able
to tell if two messages are the same is a leak.

4. Next three slides defines Det Encryption, Keyed Functions,
Rand Encryption.

Deterministic Encryption (for contrast)

n is a security parameter. A Deterministic Private-Key Encryption
Scheme has message space M, Key space K = {0, 1}n, and
algorithms (GEN, ENC, DEC):

1. GEN generates keys k ∈ K.

2. ENCk encrypts messages, DECk decrypts messages.

3. (∀k ∈ K)(∀m ∈M),DECk(ENCk(m)) = m

Keyed functions

1. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient,
deterministic algorithm

2. Define Fk(x) = F (k , x)

3. The first input is called the key

4. Choosing a uniform k ∈ {0, 1}n is equivalent to choosing the
function Fk : {0, 1}n → {0, 1}n

Note: In literature and the textbook Keyed functions k, x can be
diff sizes, but we never do.

They are wrong, we are right.

Keyed functions

1. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient,
deterministic algorithm

2. Define Fk(x) = F (k , x)

3. The first input is called the key

4. Choosing a uniform k ∈ {0, 1}n is equivalent to choosing the
function Fk : {0, 1}n → {0, 1}n

Note: In literature and the textbook Keyed functions k, x can be
diff sizes, but we never do. They are wrong, we are right.

Randomized Encryption
A Randomized Private-Key Encryption Scheme has message space
M, Key space K = {0, 1}n, algorithms (GEN,ENC,DEC).

1. GEN generates keys k ∈ K (Think: picking an Fk rand.)

2. ENCk : on input m it picks a rand r ∈ {0, 1}n and outputs
(r ,m ⊕ Fk(r)).

3. DECk(r , c) = c ⊕ Fk(r).

Note:

1. ENCk(m) is not a function- it can return many different pairs.

2. Easy to see that Encrypt-Decrypt works.

3. Rand Shift is not an example, but is the same spirit.

4. General definition that encompasses Rand Shift: Can replace
⊕ with any invertible operation.

Pseudorandom functions

Pseudorandom functions

I Informally, a pseudorandom function “looks like” a random
(i.e. uniform) function

I Can define formally via a Game. We won’t. Might be HW or
Exam Question.

I From now on PRF means Pseudorandom function.

I Will actually get Psuedorandom Permutations for real world
use.

Constructing a CPA-Secure Encryption

Theorem: If Fk is a PRF then the following encryption scheme is
CPA-secure.

1. GEN generates keys k ∈ K (Think: picking an Fk rand.)

2. ENCk : on input m it picks a rand r ∈ {0, 1}n and outputs
(r ,m ⊕ Fk(r)).

3. DECk(r , c) = c ⊕ Fk(r).

Proof Sketch: If not CPA-secure then Fk is not a PRF.

A Real World (probably) PRF:
Substitution-Permutation Networks (SPNs)

Recall. . .

I Want keyed permutation

F : {0, 1}n × {0, 1}` → {0, 1}`

n = key length, ` = block length

I Want Fk (for uniform, unknown key k) to be indistinguishable
from a uniform permutation over {0, 1}`

Substitution-Permutation Networks (SPNs)

Substitution-Permutation Networks (SPNs)

For r -rounds:
Key will be k = k1 · · · kr and ki ’s will be used along with public
S-box to create perms.

I fki (x) = Si (ki ⊕ x), where Si is a public permutation

I Si are called “S-boxes” (substitution boxes)

I XORing the key is called “key mixing”

I Note that SPN is invertible (given the key)

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to
you find?

20,000. Given repeats and conference-Journal repeats, there are
approx 10,000 papers on S-boxes.

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to
you find?

20,000. Given repeats and conference-Journal repeats, there are
approx 10,000 papers on S-boxes.

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to
you find?

20,000. Given repeats and conference-Journal repeats, there are
approx 10,000 papers on S-boxes.

Substitution-Permutation Networks (SPNs)

1) There are attacks on 1-round and 2-round SPN’s

2) Can extend attacks to r rounds but time complexity goes up.

3) These attacks are better than naive but still too slow.

4) SPN considered secure if r is large enough.

5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9
rounds (and other things) and is thought to be secure.

For now.

7) Takeway: AES is a real world SPN that is really used and is
believed to be a PRF.

Substitution-Permutation Networks (SPNs)

1) There are attacks on 1-round and 2-round SPN’s

2) Can extend attacks to r rounds but time complexity goes up.

3) These attacks are better than naive but still too slow.

4) SPN considered secure if r is large enough.

5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9
rounds (and other things) and is thought to be secure. For now.

7) Takeway: AES is a real world SPN that is really used and is
believed to be a PRF.

Feistel networks

In SPN Network S-boxes Invertible

SPN: PROS and CONS

PRO: With enough rounds secure.

CON: Hard to come up with invertible S-boxes.

Feistel Networks will not need invertible components but will be
secure.

Feistel networks

1) Message length is `. Just like SPN.

2) Key k = k1 · · · kr of length n. r rounds. Just like SPN.

3) |ki | = n/r . Need NOT be `. Unlike SPN.

4) Use key ki in ith round. Just like SPN.

5) Instead of S-boxes we have public functions f̂i . Need not be
invertible! Unlike SPN. We derive fi (R) = f̂i (ki ,R) from them.

For 1-round:
Input: L0R0, |L0| = |R0| = `/2.
Output: L1R1 where L1 = R0, R1 = L0 ⊕ f1(R0)
Invertible! The nature of f1(R) does not matter.
1) Input(L1R1)
2) R0 = L1.
3) Can compute f1(R0) and hence L0 = R1 ⊕ f1(R0).

Feistel Network

r-round Feistel networks

1) Message length is `. Just like SPN.

2) Key k = k1 · · · kr of length n. r rounds. Just like SPN.

3) |ki | = n/r . Need NOT be `. Unlike SPN.

4) Use key ki in ith round. Just like SPN.
5) Public functions f̂i . Need not be invertible! Unlike SPN.
fi (R) = f̂i (ki ,R) from

Input: L0R0, |L0| = |R0| = `/2.
Output or Round 1: L1R1 where L1 = R0, R1 = L0 ⊕ f1(R0)
Output or Round 2: L2R2 where L2 = R1, R2 = L1 ⊕ f2(R1)
...

...
...

Output or Round r : LrRr where Lr = Rr−1, Rr = Lr−1 ⊕ fr (Rr−1)

Data Encryption Standard (DES)

I Standardized in 1977

I 56-bit keys, 64-bit block length

I 16-round Feistel network

I Same round function in all rounds (but different sub-keys)

I Basically an SPN design! But easier to build.

DES mangler function is f̂i

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible

56-bit key length

I A concern as soon as DES was released.

I Released in 1975, but that was then, this is now.

I Brute-force search over 256 keys is possible

I 1997: 1000s of computers, 96 days

I 1998: distributed.net, 41 days

I 1999: Deep Crack ($250,000), 56 hours

I 2018: 48 FPGAs, 1 day

I 2019: Will do as Classroom demo when teach this course in
Fall of 2019.

Increasing key length?

I DES has a key that is too short

I How to fix?

I Design new cipher. HARD!

I Tweak DES so that it takes a larger key. Since this is
Hardware not Software this is HARD!

I Build a new cipher using DES as a black box. EASY?

Double encryption

I Let F : {0, 1}n × {0, 1}` → {0, 1}`

I (i.e. n=56, `=64 for DES)

I Define F 2 : {0, 1}2n × {0, 1}` → {0, 1}` as follows:

F 2
k1,k2(x) = Fk1(Fk2(x))

(still invertible)

I If best known attack on F takes time 2n, is it reasonable to
assume that the best known attack on F 2 takes time 22n?
Vote! YES, NO, UNKNOWN TO SCIENCE

NO The Meet-in-the-Middle attack takes 2n time. We omit
details.

Double encryption

I Let F : {0, 1}n × {0, 1}` → {0, 1}`

I (i.e. n=56, `=64 for DES)

I Define F 2 : {0, 1}2n × {0, 1}` → {0, 1}` as follows:

F 2
k1,k2(x) = Fk1(Fk2(x))

(still invertible)

I If best known attack on F takes time 2n, is it reasonable to
assume that the best known attack on F 2 takes time 22n?
Vote! YES, NO, UNKNOWN TO SCIENCE
NO The Meet-in-the-Middle attack takes 2n time. We omit
details.

Triple encryption

I Define F 3 : {0, 1}3n × {0, 1}` → {0, 1}` as follows:

F 3
k1,k2,k3(x) = Fk1(Fk2(Fk3(x)))

I Can do meet-in-the-middle but would be 22n.

I No better attack known.

Two-key triple encryption

I Define F 3 : {0, 1}2n × {0, 1}` → {0, 1}` as follows:

F 3
k1,k2(x) = Fk1(Fk2(Fk1(x)))

I Best attacks take time 22n — optimal given the key length!

I Sames on key length.

I Good for some backward-compatibility issues

