
Comp Security and
Pseduo-Random

Generators



Where do we stand?

I We defined the notion of perfect secrecy

I We proved that the one-time pad achieves it!

I We proved that the one-time pad is optimal!

I i.e. we cannot improve the key length

I We saw drawbacks of 1-time pad

I If we want to do better we need to relax the definition

I But in a meaningful way. . .



Perfect Secrecy

I Requires that absolutely no information about the plaintext is
leaked, even to eavesdroppers with unlimited computational
power

I Seems unnecessarily strong



Computational secrecy

I Would be ok if a scheme leaked information with tiny
probability to eavesdroppers with bounded computational
resources

I i.e. we can relax perfect secrecy by

I Allowing security to “fail” with tiny probability

I Restricting attention to “efficient” Eves.



Roadmap

I We will give an alternate (but equivalent) definition of perfect
secrecy

I Using a Game!.

Warning: Most math games are not fun :-(

I That definition has a natural relaxation



Roadmap

I We will give an alternate (but equivalent) definition of perfect
secrecy

I Using a Game!. Warning: Most math games are not fun :-(

I That definition has a natural relaxation



Perfect Indistinguishability via a Game

Π = (GEN, ENC, DEC) is an enc sch. Message space M.
Game: Alice and Eve are the players. Alice has full access to Π.

1. Eve chooses m0,m1 ∈M

2. Alice computes k ← GEN(1n)

3. Alice chooses m ∈ {m0,m1} and c ← ENCk(m)

4. Alice sends c to Eve.

5. Eve outputs m0 or m1, hoping that her output is DECk(c).

6. Eve wins if she is right.

Can Eve win this game with Probability over 1
2?



Perfect Indistinguishability

I Easy to succeed with probability 1
2

I Π is perfectly indistinguishable if for all Eve (algorithms), it
holds that

Pr[ Eve Wins] =
1

2

I Note: No time or space limits on Eve.



Perfect Indistinguishability

I Fact: Π is perfectly indistinguishable ⇔ Π is perfectly secret

I i.e. perfect indistinguishability is just an alternate definition of
perfect secrecy



Example or Counterexample: Shift

Does Shift have Perfect Ind? Discuss, Vote. Y, N, Un.

NO
Eve’s strategy:

1. Pick the two strings aa and ab. N large.

2. When get c = xy if x = y then guess its aa, if x 6= y then
guess ab.

Note: Eve did not need lots of time for this, so will later see that
Shift is not comp-ind either.
Note: Affine, Gen Sub, any 1-letter-sub not perfect-ind or
comp-ind.



Example or Counterexample: Shift

Does Shift have Perfect Ind? Discuss, Vote. Y, N, Un.NO
Eve’s strategy:

1. Pick the two strings aa and ab. N large.

2. When get c = xy if x = y then guess its aa, if x 6= y then
guess ab.

Note: Eve did not need lots of time for this, so will later see that
Shift is not comp-ind either.
Note: Affine, Gen Sub, any 1-letter-sub not perfect-ind or
comp-ind.



Example or Counterexample: Randomized Shift

Does Rand Shift have Perfect Ind? Discuss, Vote. Y, N, Un.

NO
Eve’s strategy:

1. Pick the two strings aN and (abcd · · · z)N/26. N large.

2. When get c = ((r1;σ1), . . . , (rN ;σN)) find the ri that occurs
the most often. If all have same σi then guess aN and prob
right. If not then guess (a · · · z)N/26 and definitely right.

Informally: Prob that every time ri comes up its the same place
mod 26 is very small. Hence Prob Eve wins is large – bigger than
1
2 .



Example or Counterexample: Randomized Shift

Does Rand Shift have Perfect Ind? Discuss, Vote. Y, N, Un.NO
Eve’s strategy:

1. Pick the two strings aN and (abcd · · · z)N/26. N large.

2. When get c = ((r1;σ1), . . . , (rN ;σN)) find the ri that occurs
the most often. If all have same σi then guess aN and prob
right. If not then guess (a · · · z)N/26 and definitely right.

Informally: Prob that every time ri comes up its the same place
mod 26 is very small. Hence Prob Eve wins is large – bigger than
1
2 .



Probability Problem

Pick m items out of n types at random until you get k of the same
type. Want do succeed with high prob.

We know from earlier work that m is poly on n. Let N be that
poly in alphabet size.

Let m be such that if pick m elements out of {0, . . . , 25} the prob
that they are all ≡ (mod 26) is small. Can take m = 26 (actually
much less).



Computational secrecy?

I Idea: Relax perfect indistinguishability

1. Allow Eve to win with probability slightly more than 1
2 .

2. Bound how powerful Eve is.

I Two approaches

I Concrete security (we omit)

I Asymptotic security



Asymptotic security

I Introduce security parameter n

I For now, can view as the key length

I Fixed by honest parties at initialization

I Allows users to tailor the security level

I Known by Eve

I Measure running times of all parties, and the success
probability of Eve, as functions of n



Comp. Indistinguishability (asymptotic)

I Computational indistinguishability

I Security may fail with probability negligible in n

I Eve’s algorithm is allowed to be randomized but must stop in
poly time. PPT=Prob Poly Time.

Note: A Randomized Algorithm is allowed to flip coins but has a
small prob of being wrong. Considered a good definition of
efficiency.



Definitions

I A function f : Z+ → Z+ is (at most) polynomial if there
exists c such that f (n) < nc for large enough n

I A function f : Z+ → [0, 1] is negligible if for every polynomial
p is holds that f (n) < 1

p(n) for large enough n

I Typical example: f (n) = poly(n) · 2−cn

Notation: Denote polynomial by poly. Denote negligible by neg.



Why these choices?

I Taking Efficient to mean PPT is standard.

I poly and neg both have convenient closure properties

I poly * poly = poly

I Poly-many calls to PPT subroutine (with poly-size inputs) is
PPT

I poly * neg = neg

I Poly-many calls to subroutine that fails with neg probability
fails with neg probability overall



Eve is Less Powerful. What About Alice and Bob?

When we first defined an encryption scheme (GEN,ENCk ,DECk)
we did not mention that in order for Alice and Bob to use the
scheme:

1. GEN had to be fast to compute.

2. ENCk had to be fast to compute.

3. DECk had to be fast to compute.

This was informally true of Shift, . . ., RSA. But could not
formalize since we did not have a security parameter n.

We will now redefine Encryption Scheme with a security parameter
n and formalize that GEN, ENCk , DECk must be fast to compute.



(Re)defining encryption

I A private-key encryption scheme is defined by three PPT
algorithms (GEN, ENC, DEC):

I GEN: takes as input 1n; outputs k . (assumed |k| ≥ n).

I ENC: takes as input a key k and a message m ∈ {0, 1}x ;
outputs ciphertext c

c ← ENCk(m)

I DEC: takes key k and ciphertext c as input; outputs a message
m or “error”



Comp. Indistinguishability (asy version) – via Game
Π = (GEN, ENC, DEC) an enc sch. Message space M.
Game: Alice and Eve are the players. Alice has full access to Π.

1. Eve chooses m0,m1 ∈M, |m0| = |m1|

2. Alice computes k ← GEN(1n)

3. Alice picks m ∈ {m0,m1}
4. Alice encodes m: c ← ENCk(m)

5. Alice sends c to Eve.

6. Eve outputs m0 or m1, hoping that her output is DECk(c).

7. Eve wins if she is right.

Can Eve win this game with probability over 1
2 .



Comp. Indistinguishability (asy version) – via Game

I Π is computationally indistinguishable (aka EAV-secure if for
all PPT Eves, there is a neg function ε(n) such that

Pr[Eve Wins] ≤ 1

2
+ ε(n)

EAV stands for Encryption Against eaVesdropper



Example of A Strategy for Eve

Eve has O(t(n)) time.
Eve’s Algorithm

1. Input m0,m1, c . (Eve wants b such that DECk(c) = mb.)
2. Eve randomly selects t(n) k ’s, computes ENCk(m0) and

ENCk(m1). If ever get c then know the answer!
3. If didn’t find answer then guess.

Pr Eve wins is

Pr(one of t(n) correct)+Pr(none of t(n) correct but final flip correct)

=
t(n)

2n
+

(
1− t(n)

2n

)
1

2
=

1

2
+

t(n)

2n−1

If this is the only possible algorithm and t(n) is poly then Scheme
is EAV-secure.



Computational secrecy

From now on, we will assume the computational, asymptotic,
setting by default



Intuition Behind Example We Will Do
Recall: The only Encryption scheme with perfect security was
1-time pad. But that is hard to do (randomness expensive).

What to Do?: Comp. Security instead of Perfect Security.

Pseudorandomness: Rather than demand perfect randomness for
1-time pad we settle for pseudorandomness.

1. Psuedorandom: Intuitively means that to a poly-bounded Eve
the sequence looks random.

2. Using psuedorandom instead of random:

2.1 PRO: Practical! Being Used!
2.2 CON: Won’t get perfect secrecy.



Pseudorandomness



Pseudorandomness

I Important building block for comp. secure encryption

I Important concept in cryptography



What does “random” mean?

I What does “uniform” mean?

I Which of the following is a uniform string?

I 0101010101010101

I 0010111011100110

I 0000000000000000

I If we generate a uniform 16-bit string, each of the above
occurs with probability 2−16



What does “uniform ” mean?

I “Uniformity” is not a property of a string, but a property of a
distribution

I A distribution on n-bit strings is a function
D : {0, 1}n → [0, 1] such that

∑
x D(x) = 1

I The uniform distribution on n-bit strings, denoted Un, assigns
probability 2−n to every x ∈ {0, 1}n



What does “pseudorandom” mean?

I Informal: cannot be distinguished from uniform( i.e. random)

I Which of the following is pseudorandom?

I 0101010101010101

I 0010111011100110

I 0000000000000000

I Pseudorandomness is a property of a distribution, not a string

Note: We omit formal definition of pseudorandom (not hard – its
in Katz’s book).



Pseudorandom generators (PRGs)

I A PRG is an efficient, deterministic algorithm that expands a
short, uniform seed into a longer, pseudorandom output

I Useful whenever you have a “small” number of true random
bits, and want lots of “random-looking” bits

Note: We omit formal definition of PRG (not hard – its in Katz’s
book).



Candidate for a PRG

Dn will be the strings in {0, 1}n2 that come out of the following
process.

1. Pick safe prime p, length n ({0, . . . , p − 1} has ∼ 2n elts).

2. Find a generator g for p of length n.

3. Compute (g1, g2, . . . , gn2) all mod p.

4. View (g1, g2, . . . , gn2) as n-bit strings.

5. Let bi be the
⌈
n
2

⌉th
bit of g i .

6. Output b1b2 · · · bn2

Not known if this is really PRG.
Assuming Discrete Log is hard

still not known.
But thought to be PRG. At least by me.



Candidate for a PRG

Dn will be the strings in {0, 1}n2 that come out of the following
process.

1. Pick safe prime p, length n ({0, . . . , p − 1} has ∼ 2n elts).

2. Find a generator g for p of length n.

3. Compute (g1, g2, . . . , gn2) all mod p.

4. View (g1, g2, . . . , gn2) as n-bit strings.

5. Let bi be the
⌈
n
2

⌉th
bit of g i .

6. Output b1b2 · · · bn2

Not known if this is really PRG.
Assuming Discrete Log is hard still not known.

But thought to be PRG. At least by me.



Candidate for a PRG

Dn will be the strings in {0, 1}n2 that come out of the following
process.

1. Pick safe prime p, length n ({0, . . . , p − 1} has ∼ 2n elts).

2. Find a generator g for p of length n.

3. Compute (g1, g2, . . . , gn2) all mod p.

4. View (g1, g2, . . . , gn2) as n-bit strings.

5. Let bi be the
⌈
n
2

⌉th
bit of g i .

6. Output b1b2 · · · bn2

Not known if this is really PRG.
Assuming Discrete Log is hard still not known.
But thought to be PRG.

At least by me.



Candidate for a PRG

Dn will be the strings in {0, 1}n2 that come out of the following
process.

1. Pick safe prime p, length n ({0, . . . , p − 1} has ∼ 2n elts).

2. Find a generator g for p of length n.

3. Compute (g1, g2, . . . , gn2) all mod p.

4. View (g1, g2, . . . , gn2) as n-bit strings.

5. Let bi be the
⌈
n
2

⌉th
bit of g i .

6. Output b1b2 · · · bn2

Not known if this is really PRG.
Assuming Discrete Log is hard still not known.
But thought to be PRG. At least by me.



Do PRGs exist?

1. We don’t know

. . . Would imply P 6= NP

2. We will assume certain algorithms are PRGs

3. Can construct PRGs from weaker assumptions (Chap 7)



Do PRGs exist?

1. We don’t know . . . Would imply P 6= NP

2. We will assume certain algorithms are PRGs

3. Can construct PRGs from weaker assumptions (Chap 7)



Using Pseudo one-time pad

I Let G be a deterministic algorithm, with |G (k)| = p(|k |)

I Gen(1n): output uniform n-bit key k

I Security parameter n ⇒ message space {0, 1}p(n)

I Enck(m): output G (k)⊕m

I Deck(n): output G (k)⊕ c

I correctness is obvious



Security of pseudo-OTP?

Theorem: Pseudo-OTP is comp secure.
Proof Sketch: Can show that if not comp secure then G is not
PRG. We omit details.



Stepping back

I Proof that the pseudo OTP is secure . . .

I . . . with some caveats

I Assuming G is a pseudorandom generator

I Relative to our definition

I The Only way the scheme can be broken is:

I If a weakness is found in G

I If the definition isn’t sufficiently strong . . .



Have we gained anything?

I YES: the pseudo-OTP has a key shorter than the message

I n bits vs. p(n) bits

I The fact that the parties internally generate a p(n)-bit string
to encrypt/decrypt is irrelevant

I The key is what the parties share in advance

I In real-world implementation, could avoid storing entire
p(n)-bit temporary value



Recall . . .

I Perfect secrecy has two limitations/drawbacks

I Key as long as the message

I Key can only be used once

I We have seen how to circumvent the first

I the pseudo OTP still has the second limitation (for the same
reason as the OTP)

I How can we circumvent the second?



Our Goal

With psuedo OTP can securely send one n-bit message. Yeah!

If use same key then cannot send another n-bit message. Boo!

We want to send multiple message with same key.



Our Goal

With psuedo OTP can securely send one n-bit message. Yeah!

If use same key then cannot send another n-bit message. Boo!

We want to send multiple message with same key.



Our Goal

With psuedo OTP can securely send one n-bit message. Yeah!

If use same key then cannot send another n-bit message. Boo!

We want to send multiple message with same key.



But first . . .

I Develop an appropriate security definition

I Recall that security definitions have two parts

I Security goal

I Threat model

I We will keep the security goal the same, but strengthen the
threat model


