Comp Security and Pseduo-Random Generators

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Where do we stand?

- We defined the notion of perfect secrecy
- We proved that the one-time pad achieves it!
- We proved that the one-time pad is optimal!
 - i.e. we cannot improve the key length
- We saw drawbacks of 1-time pad
- If we want to do better we need to relax the definition

But in a meaningful way...

Perfect Secrecy

Requires that absolutely no information about the plaintext is leaked, even to eavesdroppers with unlimited computational power

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Seems unnecessarily strong

Computational secrecy

- Would be ok if a scheme leaked information with tiny probability to eavesdroppers with bounded computational resources
- i.e. we can relax perfect secrecy by
 - Allowing security to "fail" with tiny probability

• Restricting attention to "efficient" Eves.

Roadmap

 We will give an alternate (but equivalent) definition of perfect secrecy

► Using a Game!.

Roadmap

- We will give an alternate (but equivalent) definition of perfect secrecy
 - ▶ Using a Game!. Warning: Most math games are not fun :-(

・ロト・日本・日本・日本・日本・今日や

That definition has a natural relaxation

Perfect Indistinguishability via a Game

 Π = (GEN, ENC, DEC) is an enc sch. Message space \mathcal{M} . Game: Alice and Eve are the players. Alice has full access to Π .

- 1. Eve chooses $m_0, m_1 \in \mathcal{M}$
- 2. Alice computes $k \leftarrow GEN(1^n)$
- 3. Alice chooses $m \in \{m_0, m_1\}$ and $c \leftarrow ENC_k(m)$
- 4. Alice sends c to Eve.
- 5. Eve outputs m_0 or m_1 , hoping that her output is $DEC_k(c)$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

6. Eve wins if she is right.

Can Eve win this game with Probability over $\frac{1}{2}$?

Perfect Indistinguishability

- Easy to succeed with probability $\frac{1}{2}$
- ► Π is perfectly indistinguishable if for all Eve (algorithms), it holds that

$$\Pr[\mathsf{Eve Wins}] = \frac{1}{2}$$

• Note: No time or space limits on Eve.

Perfect Indistinguishability

- Fact: Π is perfectly indistinguishable $\Leftrightarrow \Pi$ is perfectly secret
- i.e. perfect indistinguishability is just an alternate definition of perfect secrecy

Example or Counterexample: Shift

Does Shift have Perfect Ind? Discuss, Vote. Y, N, Un.

Example or Counterexample: Shift

Does Shift have Perfect Ind? Discuss, Vote. Y, N, Un.NO Eve's strategy:

- 1. Pick the two strings *aa* and *ab*. *N* large.
- 2. When get c = xy if x = y then guess its *aa*, if $x \neq y$ then guess *ab*.

Note: Eve did not need lots of time for this, so will later see that Shift is not comp-ind either.

Note: Affine, Gen Sub, any 1-letter-sub not perfect-ind or comp-ind.

Example or Counterexample: Randomized Shift

Does Rand Shift have Perfect Ind? Discuss, Vote. Y, N, Un.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example or Counterexample: Randomized Shift

Does Rand Shift have Perfect Ind? Discuss, Vote. Y, N, Un.NO Eve's strategy:

- 1. Pick the two strings a^N and $(abcd \cdots z)^{N/26}$. N large.
- 2. When get $c = ((r_1; \sigma_1), \dots, (r_N; \sigma_N))$ find the r_i that occurs the most often. If all have same σ_i then guess a^N and probright. If not then guess $(a \cdots z)^{N/26}$ and definitely right.

Informally: Prob that every time r_i comes up its the same place mod 26 is very small. Hence Prob Eve wins is large – bigger than $\frac{1}{2}$.

Pick m items out of n types at random until you get k of the same type. Want do succeed with high prob.

We know from earlier work that m is poly on n. Let N be that poly in alphabet size.

Let *m* be such that if pick *m* elements out of $\{0, \ldots, 25\}$ the prob that they are all $\equiv \pmod{26}$ is small. Can take m = 26 (actually much less).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Computational secrecy?

Idea: Relax perfect indistinguishability

1. Allow Eve to win with probability slightly more than $\frac{1}{2}$.

- 2. Bound how powerful Eve is.
- Two approaches
 - Concrete security (we omit)
 - Asymptotic security

Asymptotic security

- Introduce security parameter n
 - ▶ For now, can view as the key length
 - Fixed by honest parties at initialization
 - Allows users to tailor the security level
 - Known by Eve
- Measure running times of all parties, and the success probability of Eve, as functions of n

Comp. Indistinguishability (asymptotic)

- Computational indistinguishability
 - Security may fail with probability negligible in n
 - Eve's algorithm is allowed to be randomized but must stop in poly time. PPT=Prob Poly Time.

Note: A Randomized Algorithm is allowed to flip coins but has a small prob of being wrong. Considered a good definition of efficiency.

Definitions

- A function f : Z⁺ → Z⁺ is (at most) polynomial if there exists c such that f(n) < n^c for large enough n
- A function f : Z⁺ → [0, 1] is negligible if for every polynomial p is holds that f(n) < 1/p(n) for large enough n</p>

• Typical example: $f(n) = poly(n) \cdot 2^{-cn}$

Notation: Denote polynomial by poly. Denote negligible by neg.

Why these choices?

- Taking Efficient to mean PPT is standard.
- poly and neg both have convenient closure properties
 - poly * poly = poly
 - Poly-many calls to PPT subroutine (with poly-size inputs) is PPT
 - poly * neg = neg
 - Poly-many calls to subroutine that fails with neg probability fails with neg probability overall

Eve is Less Powerful. What About Alice and Bob?

When we first defined an encryption scheme (GEN, ENC_k , DEC_k) we did not mention that in order for Alice and Bob to use the scheme:

- 1. GEN had to be fast to compute.
- 2. ENC_k had to be fast to compute.
- 3. DEC_k had to be fast to compute.

This was informally true of Shift, ..., RSA. But could not formalize since we did not have a security parameter n.

We will now redefine Encryption Scheme with a security parameter n and formalize that *GEN*, ENC_k , DEC_k must be fast to compute.

(Re)defining encryption

- A private-key encryption scheme is defined by three PPT algorithms (GEN, ENC, DEC):
 - GEN: takes as input 1^n ; outputs k. (assumed $|k| \ge n$).
 - ► ENC: takes as input a key k and a message m ∈ {0,1}^x; outputs ciphertext c

$$c \leftarrow ENC_k(m)$$

DEC: takes key k and ciphertext c as input; outputs a message m or "error"

Comp. Indistinguishability (asy version) – via Game

 $\Pi = (GEN, ENC, DEC)$ an enc sch. Message space \mathcal{M} .

Game: Alice and Eve are the players. Alice has full access to $\Pi.$

- 1. Eve chooses $m_0, m_1 \in \mathcal{M}$, $|m_0| = |m_1|$
- 2. Alice computes $k \leftarrow GEN(1^n)$
- 3. Alice picks $m \in \{m_0, m_1\}$
- 4. Alice encodes $m: c \leftarrow ENC_k(m)$
- 5. Alice sends c to Eve.
- 6. Eve outputs m_0 or m_1 , hoping that her output is $DEC_k(c)$.

7. Eve wins if she is right.

Can Eve win this game with probability over $\frac{1}{2}$.

Comp. Indistinguishability (asy version) – via Game

Π is computationally indistinguishable (aka EAV-secure if for all PPT Eves, there is a neg function ε(n) such that

$$\Pr[\mathsf{Eve Wins}] \le \frac{1}{2} + \epsilon(n)$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

EAV stands for Encryption Against eaVesdropper

Example of A Strategy for Eve

Eve has O(t(n)) time.

Eve's Algorithm

- 1. Input m_0, m_1, c . (Eve wants b such that $DEC_k(c) = m_b$.)
- 2. Eve randomly selects t(n) k's, computes $ENC_k(m_0)$ and $ENC_k(m_1)$. If ever get c then know the answer!
- 3. If didn't find answer then guess.

 \Pr Eve wins is

Pr(one of t(n) correct) + Pr(none of t(n) correct but final flip correct)

$$=\frac{t(n)}{2^n}+\left(1-\frac{t(n)}{2^n}\right)\frac{1}{2}=\frac{1}{2}+\frac{t(n)}{2^{n-1}}$$

If this is the only possible algorithm and t(n) is poly then Scheme is EAV-secure.

Computational secrecy

From now on, we will assume the computational, asymptotic, setting by default

・ロト・日本・日本・日本・日本・今日や

Intuition Behind Example We Will Do

Recall: The only Encryption scheme with perfect security was 1-time pad. But that is hard to do (randomness expensive).

What to Do?: Comp. Security instead of Perfect Security.

Pseudorandomness: Rather than demand perfect randomness for 1-time pad we settle for pseudorandomness.

1. Psuedorandom: Intuitively means that to a poly-bounded Eve the sequence looks random.

- 2. Using psuedorandom instead of random:
 - 2.1 PRO: Practical! Being Used!
 - 2.2 CON: Won't get perfect secrecy.

Pseudorandomness

Pseudorandomness

Important building block for comp. secure encryption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Important concept in cryptography

What does "random" mean?

- What does "uniform" mean?
- Which of the following is a uniform string?
 - 0101010101010101
 - 0010111011100110
- If we generate a uniform 16-bit string, each of the above occurs with probability 2⁻¹⁶

What does "uniform " mean?

- "Uniformity" is not a property of a string, but a property of a distribution
- ▶ A distribution on *n*-bit strings is a function $D: \{0,1\}^n \to [0,1]$ such that $\sum_x D(x) = 1$
 - ► The uniform distribution on *n*-bit strings, denoted U_n, assigns probability 2⁻ⁿ to every x ∈ {0,1}ⁿ

What does "pseudorandom" mean?

- Informal: cannot be distinguished from uniform(i.e. random)
- Which of the following is pseudorandom?
 - 0101010101010101
 - 0010111011100110
 - 0000000000000000

Pseudorandomness is a property of a distribution, not a string Note: We omit formal definition of pseudorandom (not hard – its in Katz's book).

Pseudorandom generators (PRGs)

A PRG is an efficient, deterministic algorithm that expands a short, uniform seed into a longer, pseudorandom output

Useful whenever you have a "small" number of true random bits, and want lots of "random-looking" bits

Note: We omit formal definition of PRG (not hard – its in Katz's book).

 D_n will be the strings in $\{0,1\}^{n^2}$ that come out of the following process.

1. Pick safe prime p, length n ({0,..., p-1} has $\sim 2^n$ elts).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- 2. Find a generator g for p of length n.
- 3. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 4. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 5. Let b_i be the $\left\lceil \frac{n}{2} \right\rceil^{\text{th}}$ bit of g^i .
- 6. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG. Assuming Discrete Log is hard

 D_n will be the strings in $\{0,1\}^{n^2}$ that come out of the following process.

1. Pick safe prime p, length n ({0,..., p-1} has $\sim 2^n$ elts).

- 2. Find a generator g for p of length n.
- 3. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 4. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 5. Let b_i be the $\left\lceil \frac{n}{2} \right\rceil^{\text{th}}$ bit of g^i .
- 6. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG. Assuming Discrete Log is hard still not known.

 D_n will be the strings in $\{0,1\}^{n^2}$ that come out of the following process.

1. Pick safe prime p, length n ({0,..., p-1} has $\sim 2^n$ elts).

- 2. Find a generator g for p of length n.
- 3. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 4. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 5. Let b_i be the $\left\lceil \frac{n}{2} \right\rceil^{\text{th}}$ bit of g^i .
- 6. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG. Assuming Discrete Log is hard still not known. But thought to be PRG.

 D_n will be the strings in $\{0,1\}^{n^2}$ that come out of the following process.

1. Pick safe prime p, length n ({0,..., p-1} has $\sim 2^n$ elts).

- 2. Find a generator g for p of length n.
- 3. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 4. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 5. Let b_i be the $\left\lceil \frac{n}{2} \right\rceil^{\text{th}}$ bit of g^i .
- 6. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG. Assuming Discrete Log is hard still not known. But thought to be PRG. At least by me.

Do PRGs exist?

1. We don't know

- 1. We don't know \ldots Would imply $\mathsf{P} \neq \mathsf{NP}$
- 2. We will assume certain algorithms are PRGs
- 3. Can construct PRGs from weaker assumptions (Chap 7)

*ロ * * ● * * ● * * ● * ● * ● * ●

Using Pseudo one-time pad

- Let G be a deterministic algorithm, with |G(k)| = p(|k|)
- $Gen(1^n)$: output uniform *n*-bit key k
 - Security parameter $n \Rightarrow$ message space $\{0,1\}^{p(n)}$

- $Enc_k(m)$: output $G(k) \oplus m$
- $Dec_k(n)$: output $G(k) \oplus c$
- correctness is obvious

Security of pseudo-OTP?

Theorem: Pseudo-OTP is comp secure. **Proof Sketch**: Can show that if not comp secure then G is not PRG. We omit details.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Stepping back

Proof that the pseudo OTP is secure ...

- ... with some caveats
 - Assuming G is a pseudorandom generator
 - Relative to our definition
- The Only way the scheme can be broken is:
 - ► If a weakness is found in G
 - If the definition isn't sufficiently strong

Have we gained anything?

- ▶ YES: the pseudo-OTP has a key shorter than the message
 - n bits vs. p(n) bits
- The fact that the parties internally generate a p(n)-bit string to encrypt/decrypt is irrelevant
 - The key is what the parties share in advance
 - In real-world implementation, could avoid storing entire p(n)-bit temporary value

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Recall ...

Perfect secrecy has two limitations/drawbacks

- Key as long as the message
- Key can only be used once
- We have seen how to circumvent the first
- the pseudo OTP still has the second limitation (for the same reason as the OTP)

How can we circumvent the second?

Our Goal

With psuedo OTP can securely send one *n*-bit message. Yeah!

With psuedo OTP can securely send one *n*-bit message. Yeah! If use same key then cannot send another *n*-bit message. Boo!

With psuedo OTP can securely send one *n*-bit message. Yeah! If use same key then cannot send another *n*-bit message. Boo! We want to send multiple message with same key.

・ロト・日本・モート モー うへぐ

But first ...

- Develop an appropriate security definition
- Recall that security definitions have two parts
 - Security goal
 - Threat model
- We will keep the security goal the same, but strengthen the threat model