Comp Security and Psuedo One Time Pads

Do PRGs exist?

1. We don't know

Do PRGs exist?

- 1. We don't know . . . Would imply $P \neq NP$
- 2. We will assume certain algorithms are PRGs
- 3. Can construct PRGs from weaker assumptions (Chap 7)

Using Pseudo one-time pad

- ▶ Let G be a deterministic algorithm, with |G(k)| = p(|k|)
- $Gen(1^n)$: output uniform n-bit key k
 - ▶ Security parameter $n \Rightarrow$ message space $\{0,1\}^{p(n)}$
- ▶ $Enc_k(m)$: output $G(k) \oplus m$
- ▶ $Dec_k(n)$: output $G(k) \oplus c$
- correctness is obvious

Security of pseudo-OTP?

Theorem: Pseudo-OTP is comp secure. Proof Sketch: Can show that if not comp secure then G is not PRG. We omit details.

Stepping back

- Proof that the pseudo OTP is secure . . .
- ... with some caveats
 - Assuming G is a pseudorandom generator
 - Relative to our definition
- ▶ The Only way the scheme can be broken is:
 - If a weakness is found in G
 - If the definition isn't sufficiently strong . . .

Have we gained anything?

- ▶ YES: the pseudo-OTP has a key shorter than the message
 - n bits vs. p(n) bits
- ► The fact that the parties *internally* generate a p(n)-bit string to encrypt/decrypt is irrelevant
 - ▶ The *key* is what the parties share *in advance*
 - In real-world implementation, could avoid storing entire p(n)-bit temporary value

Recall ...

- ▶ Perfect secrecy has two limitations/drawbacks
 - Key as long as the message
 - Key can only be used once
- We have seen how to circumvent the first
- the pseudo OTP still has the second limitation (for the same reason as the OTP)
- ▶ How can we circumvent the second?

Our Goal

With psuedo OTP can securely send one n-bit message. Yeah!

Our Goal

With psuedo OTP can securely send one n-bit message. Yeah! If use same key then cannot send another n-bit message. Boo!

Our Goal

With psuedo OTP can securely send one *n*-bit message. Yeah! If use same key then cannot send another *n*-bit message. Boo! We want to send multiple message with same key.

But first ...

- Develop an appropriate security definition
- Recall that security definitions have two parts
 - Security goal
 - ▶ Threat model
- ▶ We will keep the security goal the same, but strengthen the threat model